

Natural language processing (NLP) for language, culture, and ethics

Houda Boumediene ^{a1}, Amar Telidji University of Laghouat, QRWX+CR2, Laghouat, Algeria, h.boumediene@lagh-univ.dz

Faitha Kaid Berrahal ^b, Ecole Normale Supérieure ENS d'Oran, Algeria, Kaidberrahal.fatihah@ens-oran.dz

Madhubala Bava Harji ^c, SEGi University & Colleges, No. 9, Jalan Teknologi, Taman Sains Selangor, Kota Damansara, PJU 5, 47810 Petaling Jaya, Selangor, Malaysia, madhu@segi.edu.my

Suggested Citation:

Boumediene, H., Berrahal Kaid, F. & Harji Bava, M. (2025). Natural language processing (NLP) for language, culture, and ethics. *International Journal of Innovative Research in Education*, 12(2), 117-134. <https://doi.org/10.18844/ijire.v12i2.9852>

Received from April 24, 2025; revised from August 23, 2025; accepted from December 24, 2025

Selection and peer review under the responsibility of Prof. Dr. Zehra Ozcinar, Ataturk Teacher Training Academy, Cyprus

©2025 by the authors. Licensee, North Nicosia, Cyprus. United World Innovation Research and Publishing Centre. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (<https://creativecommons.org/licenses/by/4.0/>).

©iThenticate Similarity Rate: 0%

Abstract

Natural Language Processing has expanded beyond a technical discipline to become a significant cultural and ethical force shaping communication, meaning making, and linguistic representation. Although prior research has examined its pedagogical applications, a clear research gap persists regarding how NLP systems mediate cultural meaning and ethical values within digital environments. This study aims to critically examine the role of NLP in representing cultures and moral perspectives, with particular attention to issues of inclusion, bias, and linguistic justice. The study employs an interpretive qualitative analytical methodology that integrates content analysis of selected NLP applications with a critical examination of algorithmic design principles and linguistic data sources. The analysis reveals that while NLP systems broaden multilingual access and communication, they frequently reproduce dominant cultural hierarchies and marginalize less represented languages and worldviews. Models that intentionally integrate sociolinguistic diversity, equitable data practices, and community participation demonstrate greater fairness and inclusivity. The study proposes a Culturally Aware Ethical NLP framework that emphasizes ethical data governance, transparent system design, and participatory development. The findings contribute to ongoing debates on responsible artificial intelligence and highlight the need to align technological innovation with cultural equity and ethical accountability.

Keywords: Artificial intelligence ethics; cultural representation; language diversity; natural language processing; technological bias.

* ADDRESS FOR CORRESPONDENCE: Houda Boumediene, Amar Telidji University of Laghouat, QRWX+CR2, Laghouat, Algeria
E-mail address: h.boumediene@lagh-univ.dz

1. INTRODUCTION

Natural Language Processing (NLP) is the intersection of computer science, artificial intelligence, and linguistics to enable machines to comprehend, read, and create human language for useful purposes (Raymond, 2023). At a time when never-before-seen amounts of text data are generated by social media, online discourse, and global information grids, NLP has been a major source for extracting meaning, conversation automation, and closing the human thinking-computational logic gap (Devlin et al., 2019). It is a gateway from machine comprehension to the languages of human use, enabling machines to accept and act in contextually suitable manners and to listen, speak, translate, abridge, and reason over languages and modalities (Nawaz, 2025).

Current NLP systems are used ubiquitously in translation, speech recognition, question answering, sentiment analysis, and the ubiquitous digital personal assistants, chatbots, and customer service interfaces that increasingly fill modern life (Zhang & Shang, 2025). These technologies use symbolic approaches (lexicons, grammar rule-based) and statistical or deep learning techniques, such as transformer-based architectures, such as BERT (Devlin et al., 2019) and GPT, which have broadened NLP's capability to understand meaning and context in more human-like methods. This technological innovation has taken NLP away from a computational task, turned it into a communicative and cultural movement, and come to determine how meaning, identity, and morality flow in virtual environments. And yet, as NLP systems become the global communication mediators, they also mediate culture and ethics. The same systems that facilitate linguistic translation and sentiment analysis also decide whose language is permissible, whose values are heard, and whose cultural expressions are lost. Researchers have also pointed out that NLP models trained mostly on Western, English-based datasets may perpetuate linguistic imperialism and algorithmic bias and be biased in favor of minority languages and non-Western communicative norms (Blodgett et al., 2020; Birhane, 2020). For example, whereas NLP-based chatbots or translation software function acutely well with English, Chinese, or Spanish but fail in low-resource languages like Amazigh, Wolof, or Quechua, not due to technical supremacy but infrastructural and cultural backwardness (Joshi et al., 2020).

Such cultural difference raises serious moral issues. If NLP programs are not pluralist in their culture, they can reinforce existing inequalities, prefer certain moral systems and forms of speech, and erase others. Similarly, use of gigantic-scale models such as GPT and LLaMA, as groundbreaking in access and linguistic capacity, has brought new sources of epistemic bias and moral homogenization as output is a representation of a finite range of value systems in the training set (Bender et al., 2021; Floridi, 2021). The problem with this research is not, therefore, in NLP technical competence but in its cultural and ethical direction. Ninety-nine percent of all NLP effort is concerned with efficacy, accuracy, and scalability, but not with moral and cultural dimensions that define human language as a social and ethical practice. Therefore, there is an urgent need to rethink NLP not as a computational tool but as a cultural and ethical medium that respects diversity, equity, and situated meaning.

This research seeks to explore the ways in which NLP facilitates cultural meaning-making and ethical conversation in languages and contexts. It brings together computational linguistics and applied ethics with cultural semiotics in an attempt to understand the ways in which language technologies create, translate, and sometimes misrepresent cultural and moral speech acts. The exploration is informed by examples of contemporary NLP tools, such as Duolingo, ChatGPT, BLOOM, and Masakhane, to analyze the intersection of innovation, inclusivity, and moral responsibility.

In return, this paper offers answers to the following research questions:

1. To what extent do current NLP systems represent and reproduce cultural and ethical meanings in language data?
2. What are the common ethical and cultural challenges emerging from NLP integration in multicultural and multilingual contexts?
3. In what way can NLP frameworks be reoriented towards culturally inclusive, transparent, and ethically aligned design principles?

To respond to these questions, the research employs a qualitative-analytical methodology consisting of theory synthesis and critical exploration of NLP systems and corpora. It draws on experiences from computational linguistics, AI ethics, and cultural linguistics towards proposing a new conceptual framework, the Culturally Aware Ethical NLP (CAENLP) Framework, that emphasizes fairness, interpretability, and cultural diversity in language technologies.

Lastly, this paper argues that NLP must transcend word processing and automation to be a platform that respects and facilitates the ethical and cultural worlds embodied in language. By aligning ethics and cultural proficiency with algorithmic modeling, NLP can move beyond technological efficacy toward meaningful, accountable, and human-centric communication.

1.1. Theoretical and conceptual framework

To comprehend how Natural Language Processing (NLP) acts as an intermediary between language, culture, and ethics, the explanation needs foundations in interdisciplinary theory that combines linguistic relativity, cultural semiotics, and applied ethics in AI. The theoretical basis of the analysis and design of the proposed Culturally Aware Ethical NLP (CAENLP) framework is explained in this section.

1.1.1. *Linguistic and cultural foundations*

Language is not a culture-free pipe for the transmission of information, but something that carries the users' worldview, values, and epistemology. The Sapir-Whorf Hypothesis states that the structure of languages determines common sense reasoning and perception, and variation in vocabulary and grammar are alternative ways of classifying experience (Whorf, 2012). Any computational model of language, according to this view, will ipso facto model a cultural worldview. When NLP models are being trained on texts from dominant languages, they stand the chance of internalizing and reinforcing the cognitive and cultural biases of the language communities (Bender & Friedman, 2018).

Expanding on linguistic relativity, Cultural Linguistics (Sharifian, 2017) further develops this idea with regard to how meaning is constituted in societies by culturally shared schemas, metaphors, and conceptual associations. For example, respect, emotion, or morality can be expressed in Arabic, English, or Japanese quite differently because culture is encoded in the forms of language in script. NLP methods, assuming that such differences are noise and not semantic depth, threaten to destroy important aspects of meaning. Therefore, NLP systems are compelled to go beyond linguistic and statistical models of language to cultural context models handling pragmatic, sociolinguistic, and semiotic levels of communication (Hymes, 2013; Halliday, 1978).

The Pragmatic Turn in linguistics and philosophy of language also emphasizes how meaning is not just derived from words but also from context, intention, and social norms (Grice, 1990; Searle, 1969). In computational contexts, this means that NLP systems must recognize speech acts, politeness norms, and contextual implicatures to be capable of understanding and generating ethically sound communication. A culturally sensitive NLP system will thus have to integrate models of social meaning and communicative intention that explain cultural groups' negotiation of truth, respect, and morality in language.

1.1.2. *Ethical theories and their relevance to NLP*

Ethical argumentation underlies the normative basis for assessing how language technologies should act when embedded in human environments. Three theoretical families: deontology, consequentialism, and virtue ethics, provide complementary viewpoints that guide ethical NLP design.

1. Deontological Ethics (Kant, 1785) focuses on duty, rights, and universal moral law. The deontological ethics of NLP would focus on respect for linguistic and cultural autonomy, respecting each language community as an end and never optimizing models. This forms the basis of the ethical imperative of informed consent, privacy protection, and non-discrimination in data gathering and model deployment.
2. Consequentialism, as utilitarianism (Mill, 1863), defines moral worth as a consequence. This applies to NLP in the sense of developing systems delivering maximal utility and justice to the masses of the world. For instance, advancing multilingual inclusivity or equal access to AI-facilitated education can be

considered as positive ethical results. Yet only utilitarianism can exchange minority harm for global effectiveness in the interest of cultural respect.

3. Aristotle's (1999) Virtue Ethics focuses more on prudence (phronesis) and moral character than rules or findings. This perspective aligns with cultivating ethical literacy and cultural humility among developers and institutions, emphasizing judgment, empathy, and responsibility in technological decision-making.

4. Virtue Ethics by Aristotle (1999) emphasizes moral character and practical wisdom (phronesis) more than rules or outcomes. This ethic is carried forward in NLP by developing ethical literacy and cultural humility within organizations and developers by foregrounding judgment, empathy, and responsibility over technical possibility.

Cumulatively, these approaches sanction a braided ethical approach respectful of rights (deontology), oriented towards good outcomes (consequentialism), generating moral character (virtue ethics), and responsive to human connectedness (care ethics). Such pluralistic bases are needed when braiding ethical thinking into computational processes.

1.1.3. *AI ethics and responsible NLP design*

The emergence of massive language models fueled controversies regarding algorithmic bias, data opacity, and ethical responsibility. Artificial intelligence ethics frameworks like those presented by UNESCO (2021) acknowledge four global principles: transparency, fairness, accountability, and inclusivity. In NLP, such norms anticipate developers to acknowledge not only technical bias risk but also cultural representation power, whose voice is added to training data, whose tales are relegated to the periphery, and how meaning is being handled by machine understanding (Floridi, 2021; Jobin et al., 2019). Also, Bender et al. (2021) explain that big models trained on huge, uncurated text datasets are likely to inherit social bias and embed pre-existing inequalities. Likewise, Birhane (2020) resists "algorithmic colonialism," where AI models that have been trained on Western language and culture data are then exported to non-Western societies without local contextualization. These arguments present decolonial and pluralistic NLP as a necessity, where cultural diversity is not an afterthought but an imperative design.

1.1.4. *Toward a culturally aware ethical NLP (CAENLP) framework*

This meeting of these linguistic and ethical perspectives forms the theoretical foundation of the Culturally Aware Ethical NLP (CAENLP) paradigm that promotes the meeting of computational design with ethical and cultural praxis. The model is based on three integrated dimensions:

a. Cultural Representation and Inclusivity

- NLP systems need to encode different linguistic structures, cultural metaphors, and pragmatic conventions.
- Training corpora should be designed with geographical and cultural balance, and they must consist of underrepresented and indigenous languages (Joshi et al., 2020).

b. Ethical Transparency and Accountability

- Model decision processes, data set provenance, and annotation guidelines should be interpretable and auditable.
- Stakeholders, such as linguists, ethicists, and impacted communities, should be involved in governance and assessment.

c. Human-Centered Interpretability and Empathy

- Algorithms will need to be created to enable ethical communication, respecting politeness conventions, contextual sensitivity, and emotional tone.
- Teachers and technologists must be educated in cross-cultural ethics and sociolinguistic sensitivity so that technology will be filled with empathy rather than neutrality.

CAENLP then redraws NLP as both a technical system and an ethical-semiotic arena in which computers, humans, and cultural contexts interactively blend. It recognizes that linguistic competence relies not on syntactic analysis or semantic proximity but rather on ethical competence, being able to read and replicate meaning in culturally suitable and morally sound manners.

1.2. Purpose of study

This study aims to critically examine the role of NLP in representing cultures and moral perspectives, with particular attention to issues of inclusion, bias, and linguistic justice.

2. METHODS AND MATERIALS

2.1. Research design

This study employs an interpretive qualitative-analytical methodology to explore the cultural and ethical implications of Natural Language Processing (NLP) systems. The approach combines content analysis of selected NLP applications with a critical review of algorithmic design and linguistic corpora, allowing for an in-depth examination of how language technologies mediate cultural meaning, moral values, and linguistic representation. The interpretive framework is informed by theories from computational linguistics, cultural semiotics, and AI ethics, emphasizing the ethical and sociocultural dimensions of NLP rather than solely its technical capabilities.

2.2. Data sources

Four representative NLP applications were selected for analysis: **Duolingo**, **ChatGPT**, **BLOOM**, and **Masakhane**. These tools were chosen for their widespread usage, cross-cultural relevance, and diverse approaches to language modeling, from educational software and conversational AI to large-scale multilingual models and community-driven low-resource language projects. Additionally, linguistic corpora associated with these systems were reviewed to assess the diversity, provenance, and cultural representativeness of the training data.

Data sources included:

- **Application outputs:** Generated text, translations, and responses from the NLP systems across multiple languages and cultural contexts.
- **Documentation and design artifacts:** Model cards, data statements, ethical guidelines, and technical reports provided by the developers.
- **Secondary sources:** Scholarly literature and critical reviews on algorithmic bias, linguistic diversity, and AI ethics.

2.3. Data analysis

Content analysis was applied to both system outputs and documentation to identify patterns of cultural representation, linguistic bias, and ethical considerations. Critical review techniques were used to evaluate corpus composition, model architecture, and design choices in terms of their potential for inclusivity, fairness, and epistemic justice.

2.4. Procedure

The study followed a three-step analytical procedure:

- **Systematic Data Collection:** Outputs and documentation from the selected NLP systems were collected, covering multiple languages, dialects, and cultural scenarios.
- **Interpretive Content Analysis:** Outputs were examined to detect cultural assumptions, language biases, and ethical implications in communication, translation, and moral reasoning.

- **Critical Synthesis:** Findings from content analysis were compared against corpus composition, model architecture, and AI ethics literature to identify systemic patterns, limitations, and opportunities for culturally aware ethical design.

This methodological framework supports the development of the Culturally Aware Ethical NLP (CAENLP) framework, integrating insights from empirical evaluation, ethical theory, and cultural linguistics to propose actionable guidelines for inclusive, fair, and context-sensitive NLP design.

3. RESULTS

3.1. NLP applications in cultural and ethical contexts

The rapid development of Natural Language Processing (NLP) has introduced unprecedented opportunities for multilingual communication, intercultural exchange, and the preservation of linguistic diversity. But such applications also accomplish the way in which computational systems reproduce cultural prejudice, moral imbalance, and representational imbalance. It is to these essential areas of application where language, culture, and ethics intersect that this section is devoted, both emphasizing the change potential and the ethical potential of NLP in action.

3.2. Cross-cultural sentiment and emotion analysis

Sentiment and emotion analysis are two of the most well-liked NLP applications, which aim to measure public opinion, detect emotions, or determine moral tone for extremely large datasets. Emotion interpretation is, however, very culture sensitive. Words and expressions with positive or negative meanings in a particular language will have entirely different meanings in another language (Balahur & Turchi, 2014).

For instance, English terms of "pride" are most likely to convey self-confidence, but in most Asian and Arab cultures, perhaps convey disrespect or arrogance. Sentiment classifiers trained in Western, monolingual corpora are more likely to misclassify affective intent, generating biased outcomes in intercultural communication, political communication, and even crisis communication (Mohammad, 2022).

Culturally sensitive sentiment models, e.g., the Multilingual Sentiment Lexicon (MSL) and CrossCultural BERT, try to overcome this by including localized affective lexicons and culture-specific emotion taxonomies. However, these endeavors are still constrained by the availability of culturally annotated data, pointing to the necessity of participatory annotation processes involving native speakers and cultural experts. In this regard, emotion recognition is not merely a technical problem but an ethical one to deduce emotions in the context of culture.

3.2 Cultural Adaptation in Machine Translation

Machine Translation (MT) is arguably the most important place where culture, meaning, and ethics meet. Although systems like Google Translate and DeepL have transformed worldwide communication, they continue to have problems with pragmatic and cultural equivalence, with translating politeness, gender, metaphor, and cultural idioms. The Japanese honorifics, for instance, Arabic politeness routines, or French *vous/tu* distinction, encode social relationships likely to be lost or distorted in automatic translation (Doherty, 2016).

Ethically, this calls up the question of linguistic fidelity vs. cultural accessibility. Should translation favor literal accuracy or cultural resonance? Moreover, translation models inherit gender bias, such as translating gender-neutral job titles (e.g., "doctor") to masculine and stereotypically gendered jobs (e.g., "nurse") to feminine (Prates et al., 2020). Not only are they language-based, but they are also ethical, representing society hierarchies and impacting user understanding.

Recent works like BLOOM (BigScience, 2022) and Masakhane (Pruthi et al., 2022) are some examples of work towards ethical and culturally sensitive MT. BLOOM is an open-source multilingual model trained in 46 languages, directly guided by ethical data-sharing bargains and fairness metrics. Masakhane, which is a pan-African community-driven NLP research project, builds translation models for low-resource African languages using community engagement and thus counteracts algorithmic colonialism (Birhane, 2020). The foregoing

examples suggest the promise of ethical collaboration and community-designed solutions to enhance cultural representation and technical competence.

3.4. NLP for moral reasoning and ethical discourse

New research on moral NLP investigates how language models can detect, analyze, or even generate moral reasoning in human discourse. Applications vary from hate speech detection and disinformation to moral framing analysis in political discourse or social media (Hoover et al., 2020).

Yet, moral language is embedded in cultural values. Moral terms, justice, honor, or mercy, for example, differ significantly from one cultural linguistic tradition to the next. Moral arguments in Arabic writing, for example, would more frequently appeal to collective and religious values, while Western moral arguments will more frequently stress individual rights (Calabria, 2023). As English-based NLP systems with moral datasets are deployed worldwide, they may be imposing a rigid moral ontology, rendering non-Western moral statements deviant or irrational (Floridi & Cowls, 2022).

For this purpose, new research is proposing cross-cultural moral NLP models that borrow from philosophical ethics and cultural semiotics and employ multilingual corpora of moral tales, proverbs, and sacred texts to unearth value systems beyond the Western moral lexicon. These models are able to improve moral AI by empowering ethical decision-making in diverse moral ecologies where heterogeneity of moral arguments is valued rather than imposing homogeneity.

3.5. Low-resource and indigenous language preservation

The majority of the world's 7,000+ languages are inadequately covered in NLP, with less than 1% of computing power utilized (Joshi et al., 2020). This dearth of linguistics is not just technical but also cultural and ethical. Low-resource languages contain specialist ecological knowledge, oral histories, and moral worldviews that are vulnerable to extinction when they are not represented digitally.

Initiatives like IndoNLP, AI4Bharat, and Masakhane have shown that community-driven NLP development can be utilized successfully for archiving and digitizing endangered languages. Through transfer learning, human-in-the-loop annotation, and crowdsourced corpora, such efforts facilitate the transfer of value from NLP to marginalized linguistic groups without disrupting local epistemologies and cultural norms (Ruder et al., 2021).

They are projects that are ethically exemplary of the principle of linguistic justice, which states that all languages are entitled to equal access to digital representation and computational services. Sustaining linguistic diversity through NLP is not simply a question of inclusivity, but of protecting cultural memory and ethical diversity in the information age.

3.6. Conversational AI and cultural communication

Conversational systems, such as chatbots, virtual tutors, and digital assistants, are exemplary cases of the ethical dilemmas posed by technological progress and cultural compatibility. Although applications such as ChatGPT, Siri, and Alexa have been highly successful in approximating naturalness, they like to keep talking according to Western norms of interaction: directness, assertiveness, and effectiveness (Xiong et al., 2023).

Such politeness strategies of most cultures rely on indirectness, modesty, or relational ranking (Brown & Levinson, 1987). Failure to reproduce these norms in chatbots will make users feel culturally dissonant or consider the system to be impolite. Therefore, culturally adaptive conversational agents have to be pragmatically aware and capable of understanding and mimicking speech acts, implicatures, and politeness markers across cultures (Yao et al., 2022).

Ethical conversational AI, on the other hand, describes the incorporation of intercultural pragmatics and ethical reasoning in conversational systems. Such features might include adaptive politeness modules, culturally sensitive sentiment detectors, and inclusive linguistic repertoires supporting dialectal variation and sociolects. By doing so, NLP applications can evolve from automation tools into tools of cross-cultural understanding.

3.7. Educational and policy implications

Culturally and ethically inspired NLP applications have tremendous potential in education, government, and public policy. In fact, in a multilingual country, NLP can serve to provide fair judgment of language, course development, and citizens' participation. Thus, the operation must be conducted through fairness principles, accountability, and transparency (UNESCO, 2021). Educational technology uses CAENLP principles that provide learners with hardware that recognizes their linguistic identity and makes intercultural communication possible.

Policy makers must, in return, create regulatory structures for ethical deployment of NLP, creating an open data culture, cultural consultation, and algorithmic audit. Multi-stakeholder collaboration is required to ensure that NLP is utilized in the public interest without renegotiating cultural hierarchies.

3.8. Summary of findings

These applications illustrate the ways in which the effect of NLP reaches far beyond computational effectiveness. Its capacity to ingest and produce language makes it an agent of culture as well as of ethics. But when constructed without cultural consideration, NLP warps meaning, silences subaltern voices, and inscribes global inequities.

On the contrary, under the banner of ethical and cultural principles, justice, inclusiveness, transparency, and compassion, NLP can be a catalytic driver for linguistic justice and intercultural communication. Each of the topics addressed here, sentiment analysis, translation, moral NLP, low-resource language preservation, and conversational AI, demonstrates the danger and the promise of endowing language technologies with cultural and ethical thought.

3.9. Ethical and cultural implications

The use of Natural Language Processing (NLP) in everyday usage, government, and schooling has increased the need to think critically about its ethical and cultural implications. While they improve efficiency and access, they also mediate social meaning, redistribute cultural power, and reform the moral boundaries of language use. The ethical considerations of NLP are more than technical in nature and extend to the basic question of how artificial systems represent, rank, and redefine human cultures and values. This section integrates the main ethical and cultural dangers found across literature, bias, misrepresentation, algorithmic coloniality, and moral homogenization, and explores their effects on responsible NLP design in the Culturally Aware Ethical NLP (CAENLP) framework.

3.9.1. *Linguistic bias and representational injustice*

NLP bias is neither computational nor random itself but rather an extension of the sociopolitical and historical biases inherent in language data. Since most of the large corpora are taken from somewhere on the internet, newspapers, Wikipedia, and social media, their samples overrepresent the discourses and languages of the Global North and underrepresent those of marginalized or oral cultures (Blodgett et al., 2020). As a result, models are constructed to mirror hegemonic language norms, and certain varieties or registers are constructed as "standard" while others are stigmatized as "deviant" or "informal."

It is this imbalance which Fraser (2009) refers to as representational injustice, the structural misrecognition or erasure of language communities. Nigerian Pidgin, Algerian Darija, or Haitian Creole dialects, for example, are repeatedly left out of NLP pipelines because of the lack of data or orthographic differences. This marginalization is not a technical issue; it is an ethical failure that denies the speakers' and cultures' epistemic status.

Mitigation of representational injustice needs to be achieved by ethical data stewardship, intentional incorporation of linguistic diversity, and fair weighting of culturally diverse speech practices during model training. CAENLP achieves this via participatory corpus building, where community members are not data suppliers but linguistic modeling collaborators.

3.9.2. Algorithmic coloniality and data power asymmetries

Prior to representational bias is the more profound problem of algorithmic coloniality, that is, the re-enactment of colonial power relations of data extraction, technologically mediated reliance, and epistemic privilege (Birhane, 2020). Most NLP models are developed and trained in rich Western nations, on Western cultural assumptions and values data. When they are exported to other parts of the globe, these systems impose implicit language, value, and meaning hierarchies.

For example, business translation and voice recognition software perform poorly on African, Arabic, or local languages but are promoted as "universal" communication technologies. Such technological universalism mirrors earlier colonial ideologies that privileged some forms of knowledge over others (Couldry & Mejias, 2019). The resultant dependency, local developers employing foreign APIs or datasets, yields what Mhlambi (2020) calls data colonialism: the expropriation of local language resources without reciprocal gain or control.

In order to minimize this, ethical NLP design should adopt data sovereignty, the community control to gather, assemble, and derive benefit from linguistic data that represents them. Data sovereignty in CAENLP is not only a matter of policy but a moral principle of upholding cultural self-determination in digital systems.

3.9.3. Moral homogenization and epistemic narrowness

Language models do not just imitate words; they also instantiate worldviews. The cultural logic of the training dataset comes through in the semantic relations and narrative forms learned by transformers. Mass-scale models, Bender et al. (2021) warn, can spit out stochastic parrots, culturally barren but fluent imitations of human language. The danger is not mere factual inaccuracy but moral homogenization: translating rich moral imaginations into a Global North ethics vocabulary.

For instance, religious morality, community ethics, or honor-diversity common in cultures outside of Western societies may be misunderstood to be discriminatory, unreasonable, or offensive based on Western liberal principles incorporated within the moderation controls or moral classifiers (Floridi & Cowls, 2022). Here, NLP acts as an epistemic filter that decides what moral vocabularies are true in online conversation.

Moral homogenization must be countered by epistemic pluralism, the acceptance of various moral ontologies and cultural logics. The CAENLP model realizes this through the placement of multicultural moral corpora, such as proverbs, narrative traditions, and ethical doctrines from various traditions, in training systems that can identify ethical meaning without translating it according to a monolithic ideological framework.

3.9.4. Cultural authenticity and contextual misinterpretation

Maintaining cultural genuineness, the true representation of meaning within its social context, is perhaps the greatest challenge of NLP ethics. Language is indexical; words come to mean through common histories, rites, and social bonds. While NLP systems free text from those contexts, they potentially produce contextual misinterpretations that pervert meaning.

For instance, the Arabic term *Insha'Allah* (meaning "if God wills") evokes humility and Godly reliance, yet most English sentiment classifiers classify it as neutral or uncertain instead of devout. Likewise, native metaphors of harmony with nature are routinely flagged as poetic but not epistemological. All these false positives point to a more general failure of cultural understanding in machine reading.

For authenticity assurance, NLP models must embed cultural pragmatics, studies of the ways meaning works within situational and relational contexts (Haugh & Kádár, 2010). CAENLP therefore requires context-aware modeling, under which language inputs are processed in accordance with cultural signs such as speech genre, communicative intent, and social hierarchy.

3.9.5. Ethical responsibility and human oversight

Another implication is the question of moral responsibility allocation between human developers and autonomous systems. Whereas agency is attributed to NLP models in content creation and discourse facilitation, responsibility falls apart. Moral failure, for instance, discriminatory outputs, culturally objectionable outputs, or misinformation, is always accounted for as algorithmic "error" yet never as human design preference (Floridi, 2021).

However, a deontological approach argues that the onus cannot lie with non-moral agents. Onus lies with policymakers, institutions, and developers who need to ensure AI systems run within the parameters of morality and culture sensitive to human dignity (UNESCO, 2021). Human verification must always remain at the center of each step, data collection, model development, testing, and implementation.

CAENLP suggests making Ethical Review and Cultural Impact Boards institutionalized entities in NLP projects, multidisciplinary teams of linguists, ethicists, sociologists, and members from the community, to review systems before deployment. Institutional mechanisms such as these ensure accountability to work and bring ethical consciousness into structural practice.

3.9.6. *Toward a framework of culturally aware ethical NLP (CAENLP)*

Synthesizing the foregoing implications, a coherent ethical–cultural framework is required. The Culturally Aware Ethical NLP (CAENLP) model answers this need by synthesizing normative principles and actionable mechanisms for equitable language technology development. It is informed by four pillars:

1. Cultural Inclusivity: Facilitating marginalized moral perspectives, dialects, and language depiction in model frameworks and data collections through participatory corpus creation.
2. Ethical Transparency: Documenting understandable documentation (data statements, model cards) and audit trails revealing value assumptions and cultural risks.
3. Epistemic Pluralism: Educating models on ethical and linguistic content ranging widely over different cultural worldviews and avoiding universalist ethical reduction.
4. Human Accountability and Oversight through Establishing institutionalized regular ethical monitoring, civic involvement, and restorative governance.

With these principles being applied, CAENLP rescues NLP as a human-technology dialogue, a respectful dialogue of human speech variation, and assures moral variation in computational space. CAENLP repositions the objective of NLP from text prediction to meaning interpretation, and from performance optimization to justice and empathy promotion.

3.9.7. *Synthesis*

Ethical and cultural concerns in NLP are not marginal issues but at the core of its epistemic validity and social acceptability. Language is the tissue of human existence; its algorithmic mediation is ethically accountable. As the borders between linguistic modeling and human communication blur, the challenge for researchers and developers is not merely to refine algorithms but to develop ethical imagination, the ability to envision technology that reflects the world's linguistic and moral diversity without deforming it.

The CAENLP framework, thus, begins to take form as both an ethical imperative and a methodological guide: to create NLP systems that address humanity, and not just for it.

3.10. *Towards the CAENLP framework: principles and implementation roadmap*

The new insight that NLP systems create, instead of simply presenting ethical and cultural meaning, calls for a new paradigm in their design and research. It is addressed by the Culturally Aware Ethical NLP (CAENLP) model with its twofold theoretical and working model that redirects NLP design towards inclusivity, openness, justice, and ethical responsibility.

This chapter develops the principles, structural facets, and blueprints of the CAENLP framework, offering a model for the integration of culture and ethics into language technologies.

3.10.1. Conceptual overview

CAENLP is grounded on the premise that language technology systems are moral–semiotic: they embody human values, enact social hierarchies, and enable meaning across culture. CAENLP recognizes that cultural and ethical inclusion cannot be appended afterward with technical "solutions," but instead must be intentionally designed at every stage of the NLP lifecycle, ranging from data curation and model training, through deployment and evaluation.

The model thereby renders NLP a collaborative, ethically conscious ecosystem that engages technologists, linguists, ethicists, and stakeholder communities, rather than a purely computational process.

3.10.2. First principles

CAENLP is underpinned by four interrelated principles from linguistic diversity research, AI ethics, and intercultural communication theory. Collectively, they form the normative basis of the model:

- **Cultural inclusivity**

NLP has to mirror the plurality of human languages and worldviews. This implies creating corpora that not only speak to the major world languages but also to regional dialects, indigenous languages, and oral traditions of knowledge. Inclusivity also entails ethical representation, eschewing stereotypes, pejorative connotations, or erasure of marginalized communities.

- **Ethical transparency**

All NLP systems tacitly hold ethical presumptions. CAENLP calls for openness by means of documentation artifact data statements (Bender & Friedman, 2018), model cards (Mitchell et al., 2019), and value impact statements that clearly outline dataset provenance, annotation decisions, prospective cultural hazards, and interpretive limitations.

- **Epistemic pluralism**

Cultural and moral diversity needs to be governed as an epistemic resource, rather than a challenge. CAENLP promotes the incorporation of varied moral grammar and linguistic ontologies, such that moral reasoning and communicative practices coming from diverse cultural traditions guide model testing and design (Floridi & Cowls, 2022).

- **Human oversight and accountability**

Human agency is still needed for post-hoc assessment of outputs, auditing ethical risks, and mediating machine-made decisions. CAENLP operationalizes the above principle in Ethical and Cultural Impact Boards, multidisciplinary review committees charged with ongoing monitoring and ethical analysis along the NLP pipeline.

3.10.3. Structural dimensions of the CAENLP framework

CAENLP reflects these guidelines in three interplay dimensions, each being able to support a salient stage in NLP development and application:

A. Data and representation dimension

- **Object: Guarantee the fairness, diversity, and cultural sensitivity of linguistic data.**
- **Key Actions:**
 - Creation of participatory corpora between native speakers, linguists, and cultural experts.
 - Use of bias diagnostics (e.g., WEAT, SEAT) and fairness metrics for the detection of representational asymmetries.
 - Maintenance of the dataset organization by means of data sheets of demographic and linguistic coverage.

- Adopt data sovereignty contracts, which provide linguistic input with ownership among communities.

B. Model design and ethical architecture dimension

- **Object: Infuse moral and cultural reasoning in model behavior.**

- **key Actions:**

- Train models on multicultural semantic embeddings, that is, collections of moral tales, proverbs, and regional discourse markers.
- Design contextual pragmatics modules that map politeness strategies, tone, and honorifics across languages.
- Apply explainable AI (XAI) to assist in the interpretability of decisions so stakeholders can identify the ethical impact of model outputs.
- Apply de-biasing and fairness-driven learning algorithms to restrict the propagation of stereotypes.
- This is NLP system ethical engineering, mapping cultural understanding to computational design.

C. Governance and evaluation dimension

- **Objective: Institutionalize social engagement and ethical accountability.**

- **Key Actions:**

- Create Ethical and Cultural Review Boards (ECRBs) to oversee data, model use, and social impact.
- Conduct cross-cultural testing that exposes model output to linguistic and ethical communities.
- Apply human-in-the-loop auditing to impose outputs on the regional communication norms and standards of ethics.
- Publish transparency reports on performance shortfalls, ethical lapses, and remedial action.

3.10.4. Implementation roadmap

The roadmap below (Table 1) provides a staged guide for operationalizing CAENLP in research and industry settings:

Table 1
CAENLP framework

Phase	Objective	Core Activities	Stakeholders Involved
Phase 1: Participatory Corpus Development	Build culturally diverse, ethically annotated datasets.	Community workshops, participatory annotation, multilingual data collection, and consent agreements.	Linguists, local communities, NGOs, and data scientists.
Phase 2: Ethical Model Training	Integrate fairness and cultural reasoning in model design.	Implement bias detection, moral lexicon embedding, and explainability layers.	AI engineers, ethicists, and social scientists.
Phase 3: Validation and Cultural Evaluation	Test system outputs across multiple cultures and languages.	Cross-cultural discourse analysis, moral reasoning tasks, and feedback loops.	Academic reviewers, educators, and end-users.

Phase 4: Governance and Monitoring	Institutionalize accountability and ethical review.	Establish ECRBs, publish transparency and impact reports, and enforce ethical compliance.	Policy makers, companies, universities, and civil society.
---	---	---	--

This model redesigns ethics from a normative framework of ideals to a utilitarian quality management framework for NLP that integrates cultural consciousness into standardization processes.

3.10.5. Visual model of CAENLP

The CAENLP model may be visually represented as a three-level circular model:

1. Inner Layer: Ethical Principles: Inclusiveness, Openness, Pluralism, Responsibility.
2. Middle Layer: Operational Dimensions: from Data Representation → Model Design → Governance.
3. Outer Layer: Human and Cultural Ecosystem: Ongoing interoperation among developers, communities, and ethical institutions.

Back loops among layers leverage feedback to establish a state of ensuring that ethical thinking is brought into every single decision-making process in architecture, towards the iterative and continuous state of ethical design.

3.10.6. Expected impact

To turn into a broad-foundation standard for design and evaluation by embracing CAENLP can be technology-wise and culture-wise:

- For tech: enhance fairness, interpretability, and robustness in multilingual environments.
- For culture: safeguarding linguistic and moral diversity.
- To policy: clear direction for democratic engagement and moral accountability.
- For education: enhanced AI literacy and understanding of ethics among developers and users.

Figure 1 synthesizes four core ethical principles, Inclusivity, Transparency, Epistemic Pluralism, and Accountability, into three feasible dimensions: Data and Representation, Model Design and Ethical Architecture, and Evaluation and Governance. The external Human and Cultural Ecosystem shows the participatory back loops that provide ongoing ethical tuning across the NLP lifecycle.

Figure 1

Overview of natural language processing (NLP) as the intersection of computer science, artificial intelligence, and linguistics

In a way, CAENLP puts computational creativity in harmony with ethical responsibility so that NLP development marches on in accordance with human dignity, cultural sensitivity, and epistemic justice.

4. DISCUSSION

Natural Language Processing (NLP) development as a computational discipline of science has grown as a cultural and ethical facilitator, in harmony with its increasing vigor in the making of world communication, social norms, and epistemic hierarchies. This paper has established that NLP programs, advanced though they are, are still founded upon cultural assumptions and ethical decisions that define how language, and hence humanness, is symbolized in machine form. The suggested Culturally Aware Ethical NLP (CAENLP) approach remedies these problems through ethical openness, cultural pluralism, epistemic pluralism, and accountability at all phases of NLP engineering and implementation.

One significant implication of this work is that language technology is not value-free. The corpora, the algorithms, and the test sets involved in NLP bring to life cultural hierarchies, elevating the value of some moral compasses and some languages and devaluing others. This bias extends from linguistic exclusion to what academics call epistemic injustice, the systematic silencing or misrepresentation of subaltern systems of knowledge (Fricker, 2007; Blodgett et al., 2020). English and other high-resource languages' dominance of training data has created a type of algorithmic monoculture under which liberal ethical thinking and Western norms of communication inform implicitly what is rational, polite, or ethical speech (Birhane, 2020).

In response, CAENLP redefines NLP development as a dialogical one, a two-way process of learning for technology and culture. Instead of relying on off-the-shelf meaning models, CAENLP prefers context-aware systems with the capacity for learning local pragmatic conventions and moral vocabularies. With the integration of cultural linguistics and moral reasoning into computational pipelines, CAENLP draws NLP away from descriptive efficacy and towards interpretive and moral precision.

This change also calls for developer ethics and institutional governance change. Developers and data scientists need to move from reactive mitigation of bias to proactive ethical design under the pressures of participatory corpus creation and community consultation. Educationally, this means the incorporation of AI ethics and cultural competency into data science education so that new technologists are taught language not just as data but as a moral and cultural phenomenon. Funding bodies and policy bodies, in turn, must require the inclusion of ethical documentation (data statements, model cards) and cultural assessment processes within all NLP research and development efforts.

At a more general level, CAENLP's deployment encourages epistemic pluralism to acknowledge that linguistic diversity entails diversity of thought, ethics, and worldview. An NLP system with plurality becomes less monolithic and hence less vulnerable, as it draws from multiple linguistic ecologies to make and read

meaning. In not simplifying cultural difference as noise but as a locus of knowledge, CAENLP injects fairness and resilience into language modelling.

5. CONCLUSION

Contemporary research validates that NLP is not merely a technical tool but also a cultural and ethical construct by which human meaning is facilitated. As language models increasingly assume greater autonomy over what may be spoken, translated, and understood worldwide, cultural authenticity and moral accountability are not ideals. The Culturally Sensitive Ethical NLP (CAENLP) approach envisioned steps towards that vision. By integrating cultural representation, ethical transparency, epistemic pluralism, and human accountability to the very core of NLP engineering, CAENLP shifts language technology from a reflection of inequality towards a platform of linguistic justice, intercultural awareness, and ethical coexistence.

In an age where algorithms speak increasingly loudly for us, it is not so much to make machines comprehend us, but to make them respect the cultural and moral universes in which we grasp ourselves. CAENLP is a chart of that ethical transformation, where artificial intelligence can be an enforcer, rather than a curator, of humanity's linguistic and moral heterogeneity.

This paper contributes to three areas of interplay:

- Conceptual Contribution: It formulates NLP theory as a moral-semiotic system, offering a philosophical framework for interrelating computational linguistics, cultural studies, and AI ethics.
- Methodological Contribution: It introduces the CAENLP framework as an operational manual, incorporating ethical and cultural issues into the entire NLP life cycle, data representation, model construction, and governance.
- Practical Contribution: It offers a working model to institutions, policymakers, and developers for assessing and implementing ethically and culturally sensitive NLP systems and advancing linguistic justice and cultural empathy with AI.

Its significance goes beyond technical ethics to the politics of language representation. CAENLP represents a challenge to researchers and technologists to retheorize what is meant by a machine "understanding" language, with the implication that to understand is to be morally engaged, culturally positioned, and dialogically answerable.

While CAENLP offers a conceptual model in general, practice entails constant multidisciplinary and transregional research collaboration. A limitation is the lack of standard measures in determining the cultural fairness or moral sufficiency of NLP output. Continuing research must create cross-cultural evaluation standards predicated on pragmatic appropriateness, ethical alignment, and linguistic diversity.

Further empirical testing would also be necessitated by case studies on the implementation of CAENLP in a specific context, such as African multilingual translation systems, Arabic dialogue AI, or computerization of indigenous knowledge. Experimentation would also need to be conducted to determine how explainable AI (XAI) and human-in-the-loop learning could be incorporated into CAENLP pipelines for the sake of real-time ethical adjustment as well as cultural guidance.

A second exciting path is one of investigating decolonial AI methods, methods that decenter Western epistemic power and center community control over language technologies (Mohamed et al., 2020). This would position CAENLP in solidarity with international movements for AI sovereignty and cooperative engagement in technological development.

Acknowledgements: Special thanks are extended to all reviewers and collaborators whose insights have enriched the refinement of the CAENLP framework.

Conflict of Interest: The authors declare no conflict of interest.

Approval: The study adheres to the ethical guidelines for conducting research.

Funding: This research received no external funding.

REFERENCES

Aristotle. (1999). *Nicomachean Ethics* (W. D. Ross, Trans.). Oxford University Press.

Balahur, A., & Turchi, M. (2014). Comparative experiments using supervised learning and machine translation for multilingual sentiment analysis. *Computer Speech & Language*, 28(1), 56-75. <https://www.sciencedirect.com/science/article/pii/S088523081300020X>

Bender, E. M., & Friedman, B. (2018). Data statements for natural language processing: Toward mitigating system bias and enabling better science. *Transactions of the Association for Computational Linguistics*, 6, 587-604. https://direct.mit.edu/tacl/article-abstract/doi/10.1162/tacl_a_00041/43452

Bender, E. M., Gebru, T., McMillan-Major, A., & Shmitchell, S. (2021). On the dangers of stochastic parrots: Can language models be too big? In *Proceedings of the 2021 ACM conference on fairness, accountability, and transparency* (pp. 610-623). <https://dl.acm.org/doi/abs/10.1145/3442188.3445922>

BigScience Workshop. (2022). BLOOM: A 176B-parameter open-access multilingual language model.

Birhane, A. (2020). Algorithmic colonization of Africa. *SCRIPTed*, 17, 389. https://heinonline.org/hol-cgi-bin/get_pdf.cgi?handle=hein.journals/scripted17§ion=21

Blodgett, S. L., Barocas, S., Daumé III, H., & Wallach, H. (2020). Language (technology) is power: A critical survey of "bias" in NLP. *arXiv preprint arXiv:2005.14050*. <https://arxiv.org/abs/2005.14050>

Brown, P., & Levinson, S. C. (1987). *Politeness: Some universals in language usage* (Vol. 4). Cambridge University Press. [https://books.google.com/books?hl=en&lr=&id=db6tAQAAQBAJ&oi=fnd&pg=PR12&dq=Brown,+P.,+%26+Levinson,+S.+%\(1987\).+Politeness:+Some+Universals+in+Language+Usage.+Cambridge+University+Press.&ots=3B7_xdbesk7&sig=Bkk6dH5ZggdfC09u1PKRaZ2n9xE](https://books.google.com/books?hl=en&lr=&id=db6tAQAAQBAJ&oi=fnd&pg=PR12&dq=Brown,+P.,+%26+Levinson,+S.+%(1987).+Politeness:+Some+Universals+in+Language+Usage.+Cambridge+University+Press.&ots=3B7_xdbesk7&sig=Bkk6dH5ZggdfC09u1PKRaZ2n9xE)

Calabria, V. (2023). Co-constructing and other-extending collaborative reported speech in Italian. *Journal of Pragmatics*, 214, 1-17. <https://www.sciencedirect.com/science/article/pii/S0378216623001042>

Couldry, N., & Mejias, U. A. (2019). The costs of connection: How data is colonizing human life and appropriating it for capitalism. In *The costs of connection*. Stanford University Press. <https://www.degruyterbrill.com/document/doi/10.1515/9781503609754>

Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2019). Bert: Pre-training of deep bidirectional transformers for language understanding. In *Proceedings of the 2019 conference of the North American chapter of the association for computational linguistics: human language technologies, volume 1 (long and short papers)* (pp. 4171-4186). https://aclanthology.org/N19-1423/?utm_campaign=The+Batch&utm_source=hs_email&utm_medium=email&_hsenc=p2ANqtz-m9bbH_7ECE1h3lZ3D61TYg52rKpfVNjL4fvJ85uqggrXsWDBTB7YooFLjeNXHWqhvOyC

Doherty, S. (2016). Translations| The Impact of Translation Technologies on the Process and Product of Translation. *International journal of communication*, 10, 23. <https://ijoc.org/index.php/ijoc/article/view/3499>

Floridi, L. (2021). Establishing the rules for building trustworthy AI. In *Ethics, governance, and policies in artificial intelligence* (pp. 41-45). Cham: Springer International Publishing. https://link.springer.com/chapter/10.1007/978-3-030-81907-1_4

Floridi, L., & Cowls, J. (2022). A unified framework of five principles for AI in society. *Machine learning and the city: Applications in architecture and urban design*, 535-545. <https://onlinelibrary.wiley.com/doi/abs/10.1002/9781119815075.ch45>

Fraser, N. (2009). *Scales of justice: Reimagining political space in a globalizing world* (Vol. 31). Columbia University Press. [https://books.google.com/books?hl=en&lr=&id=TyCrXUQJ4VkC&oi=fnd&pg=PP15&dq=Fraser,+N.+%\(2008\).+Scales+of+Justice:+Reimagining+Political+Space+in+a+Globalizing+World.+Columbia+University+Press.&ots=6DjpIOWh34&sig=2l1oxUG60a5RPzHJhU9-Jc-sGes](https://books.google.com/books?hl=en&lr=&id=TyCrXUQJ4VkC&oi=fnd&pg=PP15&dq=Fraser,+N.+%(2008).+Scales+of+Justice:+Reimagining+Political+Space+in+a+Globalizing+World.+Columbia+University+Press.&ots=6DjpIOWh34&sig=2l1oxUG60a5RPzHJhU9-Jc-sGes)

Boumediene, H., Berrahal Kaid, F. & Harji Bava, M. (2025). Natural language processing (NLP) for language, culture, and ethics. *International Journal of Innovative Research in Education*, 12(2), 117-134. <https://doi.org/10.18844/ijire.v12i2.9852>

Fricker, M. (2007). *Epistemic injustice: Power and the ethics of knowing*. Oxford University Press.

Grice, H. P. (1990). 1975 logic and conversation. *The Philosophy of Language*.

Halliday, M. A. (1978). *Language as social semiotic* (p. 136). Arnold: London. <https://www.torrossa.com/gs/resourceProxy?an=5015200&publisher=FZ4850#page=274>

Haugh, M., & Kádár, D. Z. (2010). The metapragmatics of im/politeness. In *A Plenary talk presented at the 5 th International Symposium on Politeness. University of Basel* (Vol. 30).

Hoover, J., Portillo-Wightman, G., Yeh, L., Kennedy, B., & Morstad, L. (2020). Moral foundations in news: A cross-linguistic NLP approach. *Computational Linguistics*, 46(1), 121–153.

Hymes, D. (2013). *Foundations in sociolinguistics: An ethnographic approach*. Routledge. <https://www.taylorfrancis.com/books/mono/10.4324/9781315888835-foundations-sociolinguistics-dell-hymes>

Jobin, A., Ienca, M., & Vayena, E. (2019). The global landscape of AI ethics guidelines. *Nature machine intelligence*, 1(9), 389-399. <https://www.nature.com/articles/s42256-019-0088-2>

Joshi, P., Santy, S., Budhiraja, A., Bali, K., & Choudhury, M. (2020). The state and fate of linguistic diversity and inclusion in the NLP world. *arXiv preprint arXiv:2004.09095*. <https://arxiv.org/abs/2004.09095>

Kant, I. (1785). *Groundwork of the Metaphysics of Morals*.

Mhlambi, S. (2020). From rationality to relationality: Ubuntu as an ethical and human rights framework for artificial intelligence governance. *Carr center for human rights policy discussion paper series*, 9(31), 7.

Mill, J. S. (1863). *Utilitarianism, Parker, Son, and Bourn*.

Mitchell, M., Wu, S., Zaldivar, A., Barnes, P., Vasserman, L., Hutchinson, B., ... & Gebru, T. (2019). Model cards for model reporting. In *Proceedings of the conference on fairness, accountability, and transparency* (pp. 220-229).

Mohamed, S., Png, M. T., & Isaac, W. (2020). Decolonial AI: Decolonial theory as sociotechnical foresight in artificial intelligence. *Philosophy & Technology*, 33(4), 659-684. <https://link.springer.com/article/10.1007/s13347-020-00405-8>

Mohammad, S. (2022). Ethics in sentiment and emotion analysis. *Computational Linguistics*, 48(4), 805–835.

Nawaz, A., Ahmed, M., Khan, H. U., Daud, A., Alshemaimri, B., & Iqbal, T. (2025). Resolving passage ambiguity in machine reading comprehension using lightweight transformer architectures. *Scientific Reports*, 15(1), 42406. <https://www.nature.com/articles/s41598-025-26671-0>

Prates, M. O., Avelar, P. H., & Lamb, L. C. (2020). Assessing gender bias in machine translation: a case study with Google Translate. *Neural Computing and Applications*, 32(10), 6363-6381. <https://link.springer.com/article/10.1007/s00521-019-04144-6>

Pruthi, D., Bansal, R., Dhingra, B., Soares, L. B., Collins, M., Lipton, Z. C., ... & Cohen, W. W. (2022). Evaluating explanations: How much do explanations from the teacher aid students?. *Transactions of the Association for Computational Linguistics*, 10, 359-375. https://direct.mit.edu/tacl/article-abstract/doi/10.1162/tacl_a_00465/110436

Raymond, S. T. L. (2023). *Natural Language Processing: A Textbook with Python Implementation* (2023): A Textbook with Python Implementation. Springer.

Ruder, S., Søgaard, A., Vulic, I., & Ponti, E. (2021). Beyond English-centric NLP: Towards multilingual and inclusive language technologies. *Transactions of the Association for Computational Linguistics*, 9, 240–258.

Searle, J. R. (1969). *Speech acts: An essay in the philosophy of language*. Cambridge University Press. [https://books.google.com/books?hl=en&lr=&id=4UKbAAAAQBAJ&oi=fnd&pg=PA1&dq=Searle,+J.+R.++\(1969\).+Speech+Acts:+An+Essay+in+the+Philosophy+of+Language.+Cambridge+University+Press.&ots=u5wpavNzx1&sig=ALeVw7wFwz76t1pY_Fbw1poraM](https://books.google.com/books?hl=en&lr=&id=4UKbAAAAQBAJ&oi=fnd&pg=PA1&dq=Searle,+J.+R.++(1969).+Speech+Acts:+An+Essay+in+the+Philosophy+of+Language.+Cambridge+University+Press.&ots=u5wpavNzx1&sig=ALeVw7wFwz76t1pY_Fbw1poraM)

Sharifian, F. (2017). *Cultural Linguistics: Cultural Conceptualizations and Language*. John Benjamins.

UNESCO. (2021). *Recommendation on the Ethics of Artificial Intelligence*. United Nations Educational, Scientific, and Cultural Organization.

Whorf, B. L. (2012). *Language, thought, and reality: Selected writings of Benjamin Lee Whorf*. MIT Press.

Boumediene, H., Berrahal Kaid, F. & Harji Bava, M. (2025). Natural language processing (NLP) for language, culture, and ethics. *International Journal of Innovative Research in Education*, 12(2), 117-134. <https://doi.org/10.18844/ijire.v12i2.9852>

Xiong, W., Wang, C., & Ma, L. (2023). Partner or subordinate? Sequential risky decision-making behaviors under human-machine collaboration contexts. *Computers in Human Behavior*, 139, 107556. <https://www.sciencedirect.com/science/article/pii/S0747563222003764>

Yao, Z., Wang, W., & Zhou, M. (2022). Pragmatic adaptation in multilingual conversational AI. *Knowledge-Based Systems*, 250, 109039.

Zhang, H., & Shang, J. (2025). Natural Language Processing Application Projects. In *Natural Language Processing and Applications* (pp. 415-443). Singapore: Springer Nature Singapore. https://link.springer.com/chapter/10.1007/978-981-97-9739-4_19