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Abstract 
 

Routing problems have many practical applications in distribution and logistics management. The Traveling Salesman 
Problem (TSP) and its variants lie at the heart of routing problems. The Orienteering Problem (OP) is a subset selection 
version of well-known TSP which comes from an outdoor sport played on mountains. In the OP, the traveller must finish its 
journey within a predetermined time (cost, distance), and gets a gain (profit, reward) from the visited nodes. The objective is 
to maximize the total gain that the traveller collects during the predetermined time. The OP is also named as the selective 
TSP since not all cities have to be visited. The Team Orienteering Problem (TOP) is the extension of OP by multiple-traveller. 
As far as we know, there exist a few formulations for the TOP. In this paper we present two new integer linear programming 
formulations (ILPFs) for the TOP with O(n

2
) binary variables and O(n

2
) constraints, where n is the number of nodes on the 

underlying graph. The proposed formulations can be directly used for the OP when we take the number of traveller as one. 
We demonstrate that, additional restrictions and/or side conditions can be easily imported for both of the formulations. The 
performance of our formulations is tested on the benchmark instances from the literature. The benchmark instances are 
solved via CPLEX 12.6 by using the proposed and existing formulations. The computational experiments demonstrate that 
both of the new formulations outperform the existing one. The new formulations are capable of solving optimally most of 
the benchmark instances, which have solved by using special heuristics so far. As a result, the proposed formulations can be 
used to find the optimal solution of small- and moderate-size real life OP and TOP by using an optimizer.  
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1. Introduction 

 Orienteering is the name of outdoor sport played on mountains and forests. In orienteering sport, 
the checkpoints with a particular score value are visited by the player within a time constraint that is 
not too enough to visit all checkpoints. The player scores a point from each visited checkpoint. The 
aim of this sport activity is to collect the highest score by visiting as more checkpoints as possible in 
the time allowed. Orienteering can be performed by individuals and teams as well. Each player in the 
team tries to maximize the total score points by visiting the checkpoints within a specific time limit. 
Players move from starting point and must reach the destination point on time. Checkpoints should 
not be visited by more than one player since each checkpoint contributes score once. To do so the 
route of each player must be determined. 

Tsiligirides (1984) defines the Orienteering Problem (OP) inspired by the Orienteering sport. The OP 
is to find the route which maximizes the total score point by visiting as more nodes (customers) as 
possible under the cost (time or distance) restrictions. Each node must be visited at most once. The 
origin and destination points may or may not be same. Because there is no obligation to visit all the 
nodes in the OP, it is also called as Selective Traveling Salesman Problem (Laporte & Martello, 1990). 
The OP constitutes node selection problem and the shortest Hamiltonian path problem among the 
selected nodes. To determine the shortest Hamiltonian path among the selected nodes may be 
beneficial in terms of visiting more nodes within a time limit. Therefore, OP can be thought of the 
composition of Knapsack Problem and Travelling Salesman Problem (TSP). 

The most important variant of the OP, where more than one traveller exists, is called Team 
Orienteering Problem (TOP). In some aspects the TOP resembles the Vehicle Routing Problem (VRP) 
which is commonly known in the operations research literature. VRP is defined as finding the optimal 
routes with minimum cost while satisfying all the customer demands from a central depot. Unlike the 
VRP, in the TOP (i) it is not possible to visit all the customers because of the cost (time and distance) 
restrictions; (ii) there is no capacity constraint for the vehicles; (iii) it is preferred to maximize the 
return such as profit and income rather than to minimize the cost. The real life applications for the 
TOP are; excursion in the tourism sector, commodity and service transportation systems, school bus 
routing. 

Golden, Levy & Vohra (1987) proved that the OP is NP-Hard. TOP is an OP where there is one 
traveller. Hence the TOP is also NP-Hard. Because of this reason usually heuristic algorithms are 
preferred to solve the TOPs. Interested readers may look at the Vansteenwegen, Souffriau & 
Oudheusden (2011)‘s paper in detail for the solution approaches proposed for the TOP. 

The TOP is first studied by Butt and Cavalier (1994) with the name of Multiple Tour Maximum 
Collection Problem. Later on it is named as TOP by Chao, Golden & Vasil (1996). Spectacular studies 
are published on the exact solution approaches to find the optimal solution of TOP. The first exact 
algorithm for the TOP is proposed by Butt and Ryan (1999). Butt and Ryan (1999) use the column 
generation approach together with the branch-and-bound algorithm. Additionally, Boussier, Feillet & 
Gendreau (2007) propose a branch-and-price algorithm. The proposed algorithm can find optimal 
solutions up to 100 nodes. Poggi, Viana and Uchoa (2010) propose a branch-and-cut algorithm and 
branch-and-price algorithm for the TOP. 

Butt and Cavalier (1994), Tang and Miller-Hooks (2005), Ke, Archetti & Feng (2008), 
Vansteenwegen, Souffriau & Oudheusden (2011), Dang, Guibadj & Moukrim (2013) propose mixed 
integer programming formulations for the TOP. The subtour elimination constraints of mathematical 
formulations in the literature, except Vansteenwegen et. al. (2011), increases exponentially with 
respect to the number of nodes in the underlying graph. Therefore these formulations cannot be used 
directly by any optimization software. Vansteenwegen et al. (2011) present a general TOP formulation 
whose sub-tour elimination constraints increase polynomially. As far as we are aware, this is the only 
formulation that can be used directly by an optimizer. 
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The main motivation of this paper is to present new linear programming formulations for solving 
small- and moderate-size TOPs directly by using any optimizer. Our contributions are two folds: (1) We 
present new ILPFs for the TOP with O(n2) constraints and O(n2) binary decision variables. Both 
formulations are useable directly by any optimizer. (2) We found the optimal solutions of the 
benchmark instances and observe that most of the best known solutions obtained by heuristics are far 
away from the optimal values. 

The remainder of the paper is organized as follows: In section 2, problem TOP is defined more 
precisely and general formulation of the TOP is given, while two new ILPFs for the TOP are presented 
in section 3. The performances of the proposed formulations are analysed in section 4. The conclusion 
and further remarks appeared in section 5. 

 

2. Problem Definition and General Formulation 

The Team Orienteering Problem (TOP) can be defined as follows: Let G = (V, A) be a complete graph, 
where V={1, 2, …, n} is the set of nodes (vertices), {1} is the departure node (depot, origin), {n} is the 
arrival node (and might actually correspond to a same physical location) and the remaining nodes are 
customer nodes. The set A={(i, j): i, jV, i≠j} is the arc (or edge) set. Each node i is associated with a 
profit (reward) pi (p1 = 0 and pn = 0). The traveller gains a profit pi if the ith node is visited. A travel cost 
(time, distance) tij is associated with each arc (i, j)A. The travel costs are assumed to satisfy the 
triangular inequality. There are m travellers located at the depot. The journey starts from the 
departure node and ends at the arrival node, and must complete within a predetermined time (or cost 
or distance) Tmax. Some nodes may not be visited because of Tmax restriction. The TOP consists of 
determining a set of m paths, each goes from node 1 to node n and keeps to the time limitation; such 
that each customer is visited at most once and the total profit collected is maximized. No capacity 
constraints are considered.  

The TOP can be formulated as an integer linear programming model (ILPF) by using the polynomial 
number of decision variables: xij=1 if the traveller goes from node i to node j and 0 otherwise. Then, a 
general two indexed ILPF for the TOP may be given as follows: 
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+ Sub-tour elimination constraints                                                                                                                            (7) 

+ Time constraints (Tmax)                                                                                                                            (8) 

Ajixij  ),(   ,    }1,0{  (9) 

 

In this formulation, the objective function (1) maximizes the total profit (reward) collected. 
Constraints (2) and (3) guarantee that there are m paths each starts from node 1 and ends at node n; 
whereas (4) and (5) are the degree constraints ensuring that each node (except node 1 and n) is visited 
at most once. Constraint (6) named as the conservation of flow constraints; guarantees the 
connectivity of each path. Constraint (7) is the implicit form of sub-tour elimination constraints. These 
constraints are necessary to prevent the sub-tours. Constraint (8) ensures the time limit (Tmax) is not 
exceeded for each path. Constraint (9) indicates that the decision variables are binary.  

Several ILPFs with three-index variables for the TOP have been proposed in the literature (see Butt 
and Cavalier, 1994; Tang and Miller-Hooks, 2005; Ke et. al., 2008, Vansteenwegen et. al., 2011; Dang 
et. al., 2013). Existing ILPFs of the TOP differ from each other with respect to the sub-tour elimination 
and time constraints proposed instead of the ones given in (7) and (8) above. These formulations 
except Vansteenwegen et. al. (2011), are based on Dantzig-Fulkerson-Johnson’s sub-tour elimination 
constraints of the TSP (Dantzig, Fulkerson & Johnson, 1954). The number of inequalities in these types 
of constraints grows exponentially with the number of nodes, i.e., they are exponential size 
formulations. Thus these formulations become significantly larger as the problem size increases. 
Therefore, they cannot be used directly to solve instances of small or moderate sizes by any optimizer. 
To the best of our knowledge, there is only one polynomial size formulation with three-index 
variables, proposed by Vansteenwegen et. al. (2011) for the TOP, which is based on Miller-Tucker-
Zemlin subtour elimination constraints (Miller, Tucker & Zemlin, 1960). 

 

3. New Formulation 

In this paper we focus only on the polynomial size formulations. In order to prevent illegal tours, 
i.e., eliminate sub-tours, auxiliary decision variables are defined and then sub-tour elimination 
constraints of the formulation are developed. Therefore, the proposed formulations may be divided 
into two groups according to the new auxiliary variables. A formulation is named as node-based if the 
auxiliary decision variables defined on the nodes of graph and as arc-based if the auxiliary decision 
variables are defined on the arcs of graph. In the subsequent sections, we present two new ILPFs, one 
of them is a node based and the other is an arc based formulation, for the TOP. 

 

3.1. Node Based Formulation for the TOP 

Let us define the auxiliary variable as in the following. 

vi: is the time passed up to the node i if a traveler visits on its journey and zero otherwise. 

Proposition 1: The following inequalities together with the constraints (2) - (6) are valid initializing 
and bounding constraints of the auxiliary variables vi’s for the TOP. Constraints (10) and (11) are the 
time bounding constraints ensuring that inii tTvt  max1 . Constraint (12) ensures that the journey 
must end before the predetermined value Tmax, and also vi is zero if the ith node does not visited. 
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Proposition 2: The following inequality together with the constraints (2) - (6) and (10) - (12) are valid 
sub-tour elimination constraints for the TOP. Those constraints guarantee that the solution contains 
no illegal sub-tours. 

maxmaxmax )()( TxtTxtTvv jijiijijji   ,  i ≠ j = 2,…, n-1              (13) 

 

Constraint (13) is the route continuity and sub-tour elimination constraint ensuring that the 
auxiliary variable vi of each tour works as a step function in accordance with the time between the 
consecutive nodes of tour, hence no illegal sub-tour can be formed. 

We propose the following ILPF for the TOP with respect to the proposition 1 and 2. The formulation 
is called as NBF since the auxiliary decision variables defined on the nodes of graph. 

NBF: 

Maximize (1) 
 

Subject to (2)-(6) and (9)-(13) and  

0iv , i = 2,…, n              (14) 

where xij = 0 whenever t1i + tjn + tij > Tmax and the distance matrix is Euclidean. The NBF given above 
has O(n2) binary decision variables and O(n2) constraints. 

 

3.2. Arc Based Formulation for the TOP 

Let us define the flow variable yij as in the following. 

yij: is the total time passed from origin to node j if the arc (i, j) is on the path and zero otherwise. 

Proposition 3: The following inequalities together with the constraints (2) - (6) are valid initializing 
and bounding constraints of the auxiliary variables yij’s for the TOP. Note that, if the arc (i, j) is not on 
the path then yij must be equal to zero. We do not need non-negativity constraints for yij’s since the 
constraint (16) will force this restriction. 

iii xty 111            ,    i = 2, …, n (15) 
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Proposition 4: The following inequality together with the constraints (2) - (6) and (15) - (17) are valid 
sub-tour elimination constraints for the TOP. Those constraints guarantee that the trip ends within the 
predetermined time and the solution contains no illegal sub-tours. 

 

 

In accordance with the constraints given in (15) – (18), the auxiliary variable yij of each arc on the 
path forms a step function with respect to the time between previous nodes. Thus, those constraints 
guarantee that, an auxiliary variable yij shows the time passed just after leaving the node j. 

We propose the following ILPF for the TOP with respect to the proposition 3 and 4. The formulation 
is called as ABF since the auxiliary decision variables defined on the arcs of graph. 
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ABF: 

Maximize (1) 
 

Subject to (2)-(6) and (8) and (15)-(18)  

 

where xij = 0 whenever t1i + tjn + tij > Tmax and the distance matrix is Euclidean. The ABF given above 
has O(n2) binary decision variables and O(n2) constraints. 

 

4. Computational Analysis 

In order to investigate the performance of proposed formulations, the results of models are 
compared on a set of test instances. Seven problem sets of Chao et al. (1996), including 387 
benchmark instances in total, for the TOP are used. The test instances in each set have 32, 21, 33, 100, 
66, 64 and 102 numbers of nodes, respectively. The coordinate and profit of each node is identical in 
all instances of the same set. In each set, there are three groups which have different numbers of 
vehicles. An instance in each group is characterized by a different value of Tmax. All computational 
experiments are performed on a notebook PC with Intel Core Duo CPU @1.66 GHz processor and 2 GB 
RAM. 

Instances are solved by two new formulations, NBF and ABF, presented in this paper and the 
formulation (VF) proposed by Vansteenwegen et al. (2011), as well. CPLEX 12.6 solver engine is used 
to solve the formulations. The solution time for each instance is limited with 7200 seconds. For each 
instance, the results found by solving our proposed formulations are compared with the results of 
existing VF formulation. The comparison of results is shown in Tables 1 and 2. Table 1 gives the 
comparison of formulations on the small-sized test instances up to 33 nodes. In Table 1 the first 
column shows the problem set, the second column shows the number of nodes (n), the third column 
shows the number of travellers (m) and the fourth column shows the number of test instances in the 
problem set. The next three columns indicate the number of optimally solved problems in each set by 
the model VF, NBF and ABF, respectively. 

Table 1. The comparison of formulations on the small-sized test instances 

    # of optimal solutions found 

Problem n m # VF NBF ABF  

Set 1 
32 2 18 16 9 18 
32 3 18 12 10 18 
32 4 18 16 15 18 

Set 2 
21 2 11 11 10 11 
21 3 11 11 11 11 
21 4 11 11 11 11 

Set 3 
33 2 20 18 4 20 
33 3 20 13 10 20 
33 4 20 14 13 20 
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According to the results in Table 1, ABF is able to find the optimal solutions of all problems in the first 
three problem sets within 7200 seconds. The VF and NBF can find the optimal solutions of 122 and 93 
of 147 test problems, respectively. The results in Table 1 show that the ABF is outperforming to the 
other formulations. Hence, the ABF formulation is used to solve the medium-sized test problems. In 
Table 2 the first four columns are explained as in the Table 1. The next two columns indicate the 
number of optimally solved problems in the test instances and the average CPU time in seconds, 
respectively. 

 

 
Table 2. The results of ABF formulation on the medium-sized test instances 

Problem n m # # of optimal solutions Average CPU (sec.)  

Set 4 
100 2 20 16 3081 
100 3 20 8 4640 
100 4 20 7 4790 

Set 5 
66 2 26 26 499 
66 3 26 24 4342 
66 4 26 24 4029 

Set 6 
64 2 14 14 1118 
64 3 14 14 1077 
64 4 14 14 716 

Set 7 
102 2 20 20 2049 
102 3 20 16 5050 
102 4 20 13 4755 

 

Table 2 indicates that the formulation ABF is able to optimally solve the 196 of 240 instances within 
the 7200 seconds. The average CPU time to obtain the optimal solution by the ABF formulation is 
around 3000 seconds. And the average solution time differs between 500 and 5000 seconds 
approximately. 

 

5. Computational Analysis 

In this study, we address the team orienteering problem (TOP), where the objective function is to 
maximize the total profit that travelers collect from the visited nodes. For this case, two integer linear 
programming formulations (each has polynomial number of binary variables and constraints) are 
developed to solve the TOP instances optimally by a standard optimization solver. These two 
formulations are compared with a formulation already exists in the literature. 

To investigate the performance of formulations over 650 computational experiments are done. 
According to the results obtained on the small-sized benchmark problems ABF is superior to the other 
formulations. And with the experimentation on the medium-sized problems, ABF is able to optimally 
solve the medium-sized instances with 7200 seconds time limit. As a consequence of these 
computational analyses, we conclude that ABF may be used for solving TOP directly by any optimizers. 
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