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Abstract 
 
Sentiment Analysis is the study of acquisition, extraction and interpretation of human opinions, 
sentiments, attitudes and emotions from both structured and unstructured data sources. Also called 
opinion mining, the field is becoming crucial for various application areas including market researches, 
politics, sociology and economics. Therefore, many outstanding research efforts are performed on the 
fields including both theoretical and practical aspects. This paper aims to develop a supportive framework 
for sentiment analysis, focusing on the similarity of opinion holders in a massive dataset. We used e-
commerce review dataset of Amazon spanning May 1996 – July 2014. The whole review set includes more 
than 140 million entries. As a preprocessing task each review is structured and expressed on a quadruple 
form of 4 dimensions: Target entity, opinion holder, sentiment and time. The aim of this study is to find 
out similar opinion holders for a given customer on a certain product in real time. We have defined a new 
method spanning all the opinions of an individual. The idea behind this calculation of similarity is rating of 
the same product with the same sentiment factor by two different opinion holders. The real-time 
calculation is also performed on Hadoop clusters.  Performance enhancements and accuracy rates are 
then discussed. 
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1. Introduction 

Modern marketing strategies are mostly built on customer satisfaction and tailor-made 
individual customer orientation. One of the most useful information regarding customer 
orientation is customer review. Customers highly need the others’ opinions about the product 
that they are looking for. In a dense environment the number of reviews which are commented 
on a single product may exceed hundreds or thousands. Apparently it is not possible for a 
customer to read and evaluate this amount of reviews at a time. We are facing the huge amount 
of reviews problem by this scenario. Promoting the helpful reviews for the customer is a crucial 
marketing effort which is often studied by especially e-marketing companies. Most of these 
efforts are defining most helpful reviews on a vote-basis elimination technique. The reviews are 
marked as “helpful” by the other customers. The assumption is: “Top rated reviews are the most 
helpful review for this product”.  

Vote-basis helpful review detection is an easy and useful idea. However, it rules out the 
individuals’ discriminations, likings, preferences on aspects and socio-economic conditions. We 
know that each product on the market founds a buyer and meet one’s needs. Suggesting a 
single review as the most helpful review to all kind of customers with different perceptions, 
purchasing powers and expectations may mislead the customers’ transactions and may cause 
dissatisfaction [1]. To overcome this problem, we studied on a person-basis helpful reviewer 
detection. Similar Opinion Holders Algorithm (SOHA) counts per-customer based helpful 
reviewers and promotes their reviews on a certain product. The idea behind SOHA is detecting 
the similarities between an individual customer and all the other customers and rating them 
according to the selected similarity indicator. SOHA is a higher order algorithmic framework. 
Similarity detection methods can be applied on SOHA as an add-on.  

The study is structured very straightforward. In the second section we introduced the 
application framework consists of the dataset used, the SOHA algorithm itself and the 
parallelization for streaming big data problems. Results are given and discussed under the third 
section. Last section concludes the idea and the study mentioning the future directions. 

 

2. Application Framework 

2.1. Application Dataset 

E-commerce datasets are the best data sources for sentiment analysis applications. In this 
study we applied our methods on Amazon product-review dataset [2]. The dataset contains 
product reviews and metadata information from Amazon website, including 143.7 million 
reviews spanning the years from 1996 to 2014. The dataset is categorized under sub-classes due 
to the product category which the review is written for. We have selected the category 
“Electronics” for our study.  

{ 
  "reviewerID": "A2SUAM1J3GNN3B", 
  "asin": "0000013714", 
  "reviewerName": "J. McDonald", 
  "helpful": [2, 3], 
  "reviewText": "I bought this for my husband who plays the piano.  He is having a wonderful 
time playing these old hymns.  The music  is at times hard to read because we think the book was 
published for singing from more than playing from.  Great purchase though!", 
  "overall": 5.0, 
  "summary": "Heavenly Highway Hymns", 
  "unixReviewTime": 1252800000, 
  "reviewTime": "09 13, 2009" 
} 
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Reviews and metadata files in JSON format are handled with Pandas Python library [3]. Each 
review is deserialized in a data frame and transformed in a quadruple form of 4 dimensions: 
Target entity, opinion holder, sentiment and time. In this study we prefer to express sentiments 
based on reviewer rates. No any Natural Language Processing (NLP) task is performed. This 
means that aspect level sentiments are not considered. However, entity level sentiments are 
expressed in 3 classes: Positive, neutral and negative. 

 

1.1. Similar Opinion Holders Algorithm (SOHA) 

Problem Definition: Given a set of reviewers R = { } and a set of products P = { 
} and each  has a set of reviews  with each  reviewed a set of products , we 

need to identify k closest reviewers in R to a certain reviewer  for a product .  

For a definite product-reviewer pair [ ] firstly we define all the reviewers of  which is 
said . The rating similarities between  and the each reviewer in  give us the set of k closest 
opinion holders for . The similarity calculation schema is an add-on for SOHA. In this study we 
hold the similarity calculation metric as easy as possible without any NLP tasks.  

 

1.  for each reviewer  ∈  
2. select the set of products which  has already reviewed   ⊆   
3. for each  ∈   

4.  if     has already reviewed    

5.   if   rate( ) == rate( ) 

6.    sim_score( ) += 1 
7.   else 
8.    sim_score( ) -= 1 
9. order the element of   due to the similarity scores 
10. select top k reviewer from   
 

Listing 1. SOHA Algorithm on a single node 
 

This algorithm above works in a sequential order in a linear time to define closest opinion 
holders for a single, unique opinion holder. This does not aim to extract inter-relationships 
between all the opinion holders. In a real timed e-commerce application if a customer face with 
a product page including reviews, the system must be able to decide the closest reviewers and 
suggest their opinions as top reviews. Due to the huge amount of historical data and below-a-
second response time, we preferred to study one of the most prospering parallelization 
paradigms, MapReduce on Hadoop clusters. 

 

1.2. Parallelization by MapReduce Paradigm 

The Map-Reduce programming model is accepted as a de-facto computation framework for 
big data analysis. It was first introduced by Google in 2004 and developed by Yahoo. Several 
implementations of Map-Reduce paradigm exist including Microsoft Dryad, Google Sawzall and 
Apache Hadoop. Hadoop, an open source development project supported by Apache 
Foundation is the most popular and documented framework to realize Map-Reduce based 
applications.  

Map-Reduce is a distributed computational framework enabling data intensive analysis. It is 
inspired by the functional programming paradigm [4]. Based on divide-and-conquer method, it 
recursively breaks down a complex computational problem into sub-problems which allow to be 
solved directly by a standard computing environment. These sub-problems are assigned to many 
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worker nodes called Mappers and processed by these mapper nodes in parallel. The 
intermediate results of the sub-problems are combined based on some key and assembled by 
Reducer nodes. The overall computation result is delivered by reducer nodes. The processing 
unit used in the communication between mapper nodes and the reducer nodes is a key-value 
pair. The mapper outputs are denoted by a key and reducer nodes regroup values from various 
mappers based on these keys. The process of passing key-value pairs from mappers to the 
reducer is known as shuffling. Each reducer is assigned a subset of the intermediate key space, 
called a partition. 

The mapper and reducer nodes are called worker nodes and master nodes in Hadoop 
computation environment [5]. The master node takes the input, divides it into smaller sub-
problems, and distributes them to worker nodes in Map step. 

 

 
Figure 1. Map-Reduce Sample Infrastructure 

 
Figure 1 shows a sample data flow of Map-Reduce framework. In this sample setup, input 

dataset is split into 4 buckets. Each bucket is processed by its assignee mapper node. The 
computation part of the algorithm is handled in mapper modes. A mapper node delivers its local 
output as a key-value pair. All the keys delivered from all mappers are allocated to different 
reducer nodes. Reducer nodes are responsible of reading these local outputs from the network 
and combining them based on their keys. The aggregation part of the algorithm is handled in 
reducer nodes. The aggregation results based on key combination are delivered to the output 
files. 

This study by nature is highly convenient to adapt in a MapReduce framework. As seen in 
listing 2, SOHA algorithm transacts on various reviewers for a single product. For each reviewer 
it calculates a similarity score depending their historical review records. A small adaptation in 
SOHA algorithm can easily parallelize the execution framework.  

Let o is the number of mapper nodes in our MapReduce setup. The set of products P can be 
split to various mapper nodes as , ,. . . , . The SOHA algorithm can be ran on each mapper 
node for its’ dedicated subset of products .  

 
Mapper Execution: 

for each reviewer  ∈  

 select the set of products which  has already reviewed   ⊆   
 for each  ∈   

  if     has already reviewed    
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   if   rate( ) == rate( ) 

    sim_score( ) += 1 
   else 
    sim_score( ) -= 1 
 
Reducer Execution: 

Sum up sim_score( ) of each node to a global similarity rate 
order the element of   due to the its global similarity rate 
select top k reviewer from   

Listing 2. SOHA Algorithm on Map reduce 
 

2. Results and Discussion 

In the previous sections we explained the structure of the dataset, clarified the Similar 
Opinion Holders Algorithm (SOHA) and enriched the algorithm by using MapReduce 
parallelization. This section aims to give the results of singular and parallel execution of SOHA 
algorithms on Amazon datasets via 1, 2, 4 or 8 nodes. The results are shown on Table 1.  

Definition: Scale factor can be calculated by the terms on Listing 2. It is the combination of all 
elements in  and . Thus we may say that it is the product of the cardinality of  and the 
cardinality of . 

Table 1. Execution times on various MapReduce setups 

Scale Factor 1 node 2 nodes 4 nodes 8 nodes 

100 0.22 0.13 0.08 0.05 

1000 1.80 1.00 0.63 0.34 

10000 16.50 7.90 5 2.4 

100000 130 68 35 15 

 

Figure 2 demonstrates the decrease in execution time of SOHA algorithm in case of the usage 
of Map Reduce parallelization. One may notice that the parallelization has a valuable effect on 
especially on bigger scale factors. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2. Noticeable decrease in execution time 
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Figure 3 apparently reveals the positive effect of parallelization on the execution time of SOHA 
algorithm. In comparison with single node execution, the more parallel environment yields the 
better execution times.  

 
According to the results that we have obtained from various MapReduce setups we may 

obviously note that our SOHA algorithm is giving response in meaningful time whether the 
dataset has a big scale factor. The execution time of SOHA depends basically on scale factor. The 
more reviewer SOHA handles requires much more execution time. The same constraint is either 
on the number of products that each reviewer has reviewed. Scale factor depends on these two 
values. For the accuracy on calculation of similar opinion holders we need huge amount of 
reviewers, each has a large number of reviewed products. This means a great value of scale 
factor, hence increase in execution time. The operation details of the parallelization show us 
that mapping the problem into multiple mappers can separate the execution time in linear 
manner. Shuffling between mapper nodes does not cost much in our problem. By the advantage 
of linearly separable structure of SOHA, we can add as much as possible nodes to reduce the 
execution time in a usable interval. 

 

3. Conclusion 

In this study, we proposed an algorithm to detect similar opinion holders of a customer on an 
e-commerce dataset. The algorithm is designed adaptive to MapReduce parallelization as much 
as possible. We tried the algorithm on 1-node, 2-nodes, 4-nodes and 8-nodes Hadoop clusters. 
Based on obfuscated real world data we reached very meaningful results. The proposed 
algorithm, SOHA takes review rates in consideration. This may mislead the algorithm and also 
disallow the calculation of the similarity according to a sub aspect of a product. In the future, we 
plan to analyze the comment itself by using Natural Language Processing techniques. Also, we 
plan to exercise the reviews in aspect level. Entity level review consideration may sometimes 
misrepresent the opinion holder’s intent.  
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