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Abstract

The use of matrix algebra has expanded considerably in the last 25-30 years, in parallel with computer technology evolution.
Introducing of matrix notation leads to simple and concise formulation of highly complex applications. In the first instance, a
linear model can be developed or if the model is nonlinear, it can be linearized in first approximation, once or every step of a
solving iterative process. In this paper, the authors will present two methods used to solve linear equations systems. First
methods will be solved by manual calculation and the second method will be solved using a computer program, SISLIN,
developed in Power Systems Department of the Politehnica University Timisoara. Methods are presented to students who
are asked to apply the methods for case studies. Volume calculation is large, for which the authors analyze student’s
concentration and attention degree.
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1. Introduction

Many problems from technical field and also in terms of power engineering field lead to mathematical
models which involve solving large dimension linear equation (Thangaraj, 2008), (Thangaraj, 2013).
Moreover, for any problem which can be developed, in first instance, a linear model or, if the model is
nonlinear, it can be linearized in first approximation, once or every step of a solving iterative process. In
these paper linear equations systems can be solved by two methods: Gauss version elimination
method and Southwell method. First method is part of direct methods while the second method is
iterative. A system of n linear equation with coefficients a; € R,i=1,2,..,n,j=1,2,..,n and free
terms b €M ,i=1,2,..,n,withn unknown, X. € R,i=1,2,..,n,is defined by relation (1) (Kilyeni,
2014), (Kilyeni, Fllép, & Dumitrescu, 1997). Matrix and vector notations for coefficients matrix A, free
terms column vector b and unknown column vector x are defined by relation (2). It results matrix form
of linear system (3).

Ay X +a, Xy +ag Xy + e+ 8,0 X, :bl

Ay X+ 8y X, H 8y X+ oo +a2n'xn:b2
Ay X+ g Xy + g5 X5+ - +a3n'xn:b3 (1)
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L a‘nl an2 an3 a‘nn a
b=[b b, b, - b ] )
X:[Xl X, X Xn]t
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2. Presentation of analyzed methods
2.1. Gauss version elimination method (triangulation)
This method involves transforming the system (3) in an equivalent form (4),
A"x=b’ (4)
Method’s algorithm (Kilyeni, Barbulescu, & Simo, 2013), (Kilyeni, Negru, 1991) is the following:

a) Necessary initializations are made: Ag=A, bo=b
b) At a certain step k, k = 1, 2, ..., n , element of matrix A* and of vector b* are calculated with
relations (5) - (6), system reaching to the form (7);
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c) Finally, system reaches to form (8). Solution results clearly.
1 1 1 1
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(8)
n
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2.2. Southwell method (residues)

System defined by relation (3) is written to form (10). Residue relationship is written as (11), residue
column vector being r* =[r rj rf ... r*]".

n
aii~xi+Zaij~xj=bi , i=1,2,---,n (10)
E
r=a;-x +> a;-x b0 , i=12,-n (11)
B
Method’s algorithm (Kilyeni, Barbulescu, & Simo, 2013), (Kilyeni, Negru, 1991) is the following:
a) xis initialized with x0: x® =[x? x? x? ... X0t
b) At a certain step k, k=1, 2, 3, ..., the new values of variable are determined with relation (12),
Xp=Xp AR X =xt =120, i=m (12)

where correction h*! and residues have the expressions:
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c) Termination condition of calculation process is [h*?| < ¢.
Starting with the second iteration, practical relation to determine the residues can be used:
k_p kK oka Qim k4 i—12 .
rm— ’ ri _ri __'rm y I=LZ,---,n , 1I#M (14)
i
k k-1 k-1
Xm =X, +o-h (15)
3. Numerical results and discussions
Fourth order linear equation system is defined by relation (16).
8:X1—2-X + X3 = 18 8 -2 1 0 18
X{+6-Xo0+ 2:X3— 3:-%= 8 1 6 2 -3 8
Xo+4,3:- X3+ 2-%4=-4,6 0 1 4,3 2 —-4,6
3:X1+3:-Xp — x3—10-x4= 7 3 3 -1 -10 7

3.1. Manual solving of application with Gauss version elimination method (triangulation)

Triangulation of system’s coefficients matrix with appropriate processing free terms vectors, is
performed in n = 4 steps:
a) Step 1
e First equation
(8/8)-x1 —(2/8)- %2 +(1/8)-x3+(0/8)-x4 =18/8
1,000- %1 —0,250- %o +0,125- X3 —0,000 - X4 = 2,250
e Second equation
(1-1-D)-%; +(6+1-0,25) - X5 +(2-1-0125) - X3 +(-3-1-0) - x4 =8-1-2,25
0,000- %1 +6,250- Xp +1,875- x3 —3,000- x4 =5,750
e The third equation is not modified, because as1 =0
e Fourth equation
(3-3-1)-x1 +(3+3:0,25) - Xp +(—1-3-0,125)- X3 +(-10-3-0)- x4 =7-3-2,25
0,000- %1 +3,750- X —1,375- X3 —10,000- x4 =0,250
e System after step 1
1-%—0,250 Xy +0,125-x3+0,000- X4 = 2,250
0-%1+6,250 X2 + 1,875-x3 —3,000- x4 = 5,750
0-%q + 1,000 Xy + 4,300 X3 + 2,000 - X4 = 4,600
0-% +3,750-Xp — 1,375- X3 — 10,00- x4 = 0,250
b) Step 2. The manner of calculation is similar with de first step, the calculations are being performed

for the second, third and fourth equations.
e System after step 2
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1-%1-0,250-x9 +0,125-x3 +0,000- x4 = 2,250
0-x1 + 1-Xp +0,300-x3—0,480-%x4 = 0,920
0-x1 + 0-Xy +4,000-x3 +2,480 - x4 =-5,520
0-x3+  0-xp—2,500-x3—8,200- x4 =-3,200

c) Step 3. The calculation is performed for third and fourth equations.

e System after step 3

1-%1-0,250-x9 +0,125-%x3 +0,000- x4 = 2,250
0-xq + 1-x2+0,300-x3-0,480-x4 = 0,920
0-xq+ 0-%y + 1-x3+0,620-x4 = —1,380
0-x1+ 0-xo+ 0-x3—6,650-x4 =—6,650

d) Step 4
e Fourth equation
(6,650/6,650) - x4 =6,650/6,650
0,000 %7 +0,000 - xo +0,000 - x3 +1,000 - x4 =1,000

e System after step 4

1-%1 0,250 Xy +0,125- X3 +0,000- x4 = 2,250
0-x+  1-X+0,300-x3-0,480-x4 = 0,920
0-x1 + 0-%y + 1-x3+0,620-x4 = —1,380
0-X1+ 0~X2— 0-X3+ 1-X4= 1,000

x4 =1,000
X3 = —1,380 —0,620 - 1,000 = —2,000
X =0,920 +0,300 - 2,000 + 0,480 - 1,000 = 3,000

3.2. Solving of application with Southwell method (residues) using SISLIN program

X1 =2,250+0,250-2,000+0,125- 2,000 + 0,000 - 1,000 = 3,000

Solving of triangular system is made from x, and finishing with x.

Database is created and solved in program SISLIN. The main window is presented in figure 1.
Database contains system order, error and maximum number of iterations, system coefficients matrix
and free terms vector. Figure 2 presented window with database solved in triangulation program. In

the next step used iterative method is selected and system solution is initialized.
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5} Aplicatie nova

S S

Ordin sistem:  |* <
Eroarea:  [00001
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Figure 1. Database created in SISLIN program

Fisiere | Editare  Structura matrice  Vizualzare  Solutie directs  Solutie iterativa  Ferestre  Ajutor

{F«siemou- ﬂ a2m 2] 1)
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B sahvare

W sabvare ca..

& Setare imprimanta...
@ Listeaza

X Parasire aplicatic

Figure 2. Solving database in SISLIN program
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Figure 3. Selecting the method used for calculation
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Figure 4. System solution initialized
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Figure 5. Values obtained after solving the application
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Figure 6. Values obtained after solving the application

The next figures (Figures 5-7) present values obtained after solving application using calculation
program. Maximum number if iteration is Itermax = 50. In case of linear equation from relation (16) a
number of 39 iterations were required. Values obtained for variable x and residues are presented for
the first 8 iteration and for the last iteration. The results obtained using allowable error (in program,
EpsX), € = 10-4, are presented in Fig. 7.
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Figure 7. Values obtained after solving the application.
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4. Conclusions

Triangulation method requires less computing time, because of the number of elementary
arithmetic operations per step. If the system is solved repeatedly for different values of free terms,
then triangulation of matrix A is made once for the first solving. For the following solving only the
operations on free terms is repeated and the last step of algorithm is made. Solving through manual
calculation using Southwell method requires greater computing time, which is why the use of
computer program is the best solution. Software tool is easy to use and has the all facilities offered by
Delphi environment. Also, the user is guided step-by-step to solve numerical application. In case of
numerical application analyzed the exact solution is obtained, although it worked only with 4
significant digits.
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