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Abstract 

Due to unconscious consumption of natural water resources and climate change, a water crisis is expected in the upcoming years. 
At this point, it is necessary to know the water levels in the dams and develop strategies for water-saving applications in the 
coming periods. This study aimed to propose the artificial neural network models for forecasting the water in the dams that 
provide usable water for the future. For this reason, long short-term memory (LSTM) networks that are a type of recurrent neural 
networks are employed to make future forecasts. The daily dam occupancy rate data between 2005 and 2021 for İstanbul is used 
to train the LSTM network. Then, the developed models are used to forecast over the next 30 days. The data are used in ARIMA 
to model the daily dam occupancy time series, for a fair comparison. The forecast values gained by the proposed LSTM network 
are compared with the traditional methods using RMSE and MAPE for all the forecast horizons. The results show that the LSTM-
based forecast model always has a better accuracy rate than the ARIMA.  
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1. Introduction 

The rate of usable water in the world is rapidly decreasing due to unconscious consumption of natural 
water resources and climate change [1]. It is estimated that this water demand will increase further in the 
coming years, and as a result of this increasing demand, a water crisis is expected in the coming years. It 
should even be mentioned that water resources are an important input that directly affects the living 
standards and economic structure. 

The annual amount of available water per capita in Turkey is around 1,350 m3; however, this number is 
estimated to be 1,000 m3 with a growing population in the future [2]. It is unlikely to increase the amount 
of usable water economically. There is a way it would come to mind, which is to get fresh water from 
seawater, but this way is quite costly. Therefore, it is strategically important for countries to use the avail-
able water resources effectively and sustainably. Since the 1980s, it is on the water sector reform agenda 
in Turkey and has turned in some presentative applications [3]. However, the first national policy for the 
efficient use of natural water resources in Turkey is expressed in the Sixth Development Plan [4]. In order 
to encourage the sustainable use of existing water resources throughout the country and determine water 
needs and form effective policies, it is very essential to determine and monitor the existing water reserves, 
as well as make estimates and plans for the coming years.  

Istanbul is the most populated city in the country and its water consumption rate is quite high, depend-
ing on the development and population. In Istanbul, which has gone through a low rainy period, 77% of 
the dams supplying water to the city are empty, and there is a significant increase in water consumption 
compared to the previous year due to the coronavirus [5].  

1.1. Related studies 

In the related literature, dam occupancy rates have been generally used within the scope of predicting 
and preventing floods. For example, [6] proposed an automated system for monitoring the water level in 
reservoirs to prevent the bursting of dams and dams. By developing software and hardware for this sys-
tem, the authorities have been provided with the opportunity to monitor instantly. Shibuo et al. [7] per-
formed real-time flood prediction for dam operations and the performance of their proposed procedure 
was evaluated for three typhoons on Honshu Island in Japan.  

Bocchiola and Rosso [8] applied real-time flood prediction for the case study of the St. Giustina dam in 
Italy. Simaityte et al. [9] focused on extreme floods over 200 years in the Kaunas dam water level control 
during the flood period and developed a risk-based control approach. Pidal et al. [10] proposed a process 
that allows hydrological estimates of the inflow of reservoirs in the mountainous regions of Spain to sup-
port the establishment of dam’s shelters during periods of floods. Along with these studies, Leitão and 
Castilho [11] simulated the heat transfer and boundary conditions required to obtain a representative 
behaviour at the first filling of the dam and identified the main issues related to structural and geotechnical 
modelling. Salawy et al. [12] examined Aswan high dam reservoir operation under the influence of differ-
ent climate change scenarios. 

Cheng et al. [13] conducted a sensitivity analysis that included factors such as land resource use, water 
occupancy of the city, reservoir sediment accumulation, reservoir temperature structure and water reser-
voir structure identified as environmental impact factors for the Songyuan Water Dam in China. Guo et al. 
[14] simulated the deformation properties of the rockfill dam to investigate and predict the effects of the 
change in water level upstream of the rockfill dam on the deformation properties of the dam. In this paper, 
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we firstly apply long short-term memory (LSTM) networks to forecast the dam occupancy rate by consid-
ering the sustainable consumption of usable water. 

1.2. Purpose of the study 

    At this point, it is necessary to estimate the water levels in the dams feeding Istanbul and develop 
strategies for water-saving applications in the coming periods. In this study, we have made the forecast of 
the water in the dams that provide usable water to Istanbul for future periods. For this reason, the LSTM 
method is utilised to forecast the daily dam occupancy rate. 

2. Materials and Method 

This section explains the models and methods that were used for the experiment.  

2.1. Artificial neural networks (ANNs) 

ANNs are systems consisting of interconnected processing elements with different weights, inspired by 
the structure of nerve cells in the human brain. ANNs are artificially designed network systems inspired by 
the structure of neural networks in the brain. These networks are a system consisting of simple processor 
elements (neurons) and parallel connections (synapses) between each other to use and store the 
knowledge gained through experience later. Haykin [15] defined the ANNs as follows: it is a processor with 
a natural tendency to store and use experience-based information. The ANNs are similar to the human 
brain in two respects: the information is obtained by a network through a learning process and the so-
called synaptic weight between the nerve cells is used to store information [15]. The structure of an ANN 
is shown in Figure 1. 

 

 
 

Figure 1. Example of an ANN structure   

The ANNs have the capability to learn ‘by example’. Here, a set of input and output variables is pre-
sented to set the rules that regularise the relationship between variables [16]. ANNs are widely used for 
many applications and studies because of their certain special advantages. Some of these advantages are 
listed as [16–23]: self-learning ability, storing information, handle with incomplete information, adaptabil-
ity, real-time operation, fault tolerance ability, parallel processing capability, multiple task ability, easy 
implementation and low cost. 
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2.2. Recurrent neural networks (RNNs) 

ANNs can be either feedback (recurrent) networks or feed-forward networks. RNNs are a special case 
of neural networks and one of the feed-forward network types. RNNs have memory, parameter sharing 
and tour integrity features and can learn non-linear properties of arrays with high efficiency. RNNs contain 
a self-connecting hidden layer and the connections between nodes form a directed graph along a temporal 
sequence. The basic logic in RNNs is to make predictions using sequential information. RNNs use previous 
steps to predict the next step RNN method has memory. While the RNNs make predictions for time step 
𝑥 in the future, it advances it step by step by estimating all the intermediate time steps up to that time 
from the data from the past periods; then, it performs the prediction for time step 𝑥 using intermediate 
time steps. RNNs are affected by all the information learned before while making predictions. This situa-
tion can lead to information pollution in RNNs. 

2.3. Long short-term memory 

The LSTM deep learning algorithm is known as a RNN introduced by Hochreiter and Schmidhuber [24] 
to eliminate the disadvantages of the RNN architecture [25]. LSTM can also be expressed as a memory-
added RNN to evaluate whether the information is useful [26]. With these features, the LSTM network is 
effective in capturing long-term relationships between temporarily separated data points in sequential 
data [27]. LSTM is recommended for sequential or time series problems as it can learn long-term depend-
encies with its memory transitive mechanism. The LSTM model is arranged as a chain structure [28]. How-
ever, the repeating module has a different structure. Instead of a single neural network like a standard 
RNN, it has four interactive layers with a unique communication method. A typical LSTM network consists 
of memory blocks called cells. Cell states are transferred to the next cell. The cell state is the main data 
flow chain that allows the data to proceed without change. 

LSTM performs exceptionally in learning high-level temporal patterns with time series data, and predic-
tion accuracy increases as the number of information increases in LSTM [29]. In the LSTM network, the 
data is divided into training and test data, and the network is expected to learn both long-term and short-
term properties of the training data. 

The memory cell of the LSTM model consists of three non-linear gate units, an input gate (Eq. 1), forget 
gate (Eq. 2), an output gate (Eq. 4) and memory cells (Eq. 3) [30]. The forget gate and output activation 
function are the most critical components of the LSTM block structure. Removing any of these significantly 
reduces LSTM performance. The processing functions of the gates and cells of the neural network are given 
below. 

𝑖
˙

t = 𝜎(𝑊xi𝑋t +𝑊hiℎt−1 +𝑊ci𝐶t−1 + 𝑏i)       (1) 

𝑓t = 𝜎(𝑊xf𝑥t +𝑊hfℎt−1 +𝑊𝑐𝑓𝑐t−1 + 𝑏f)       (2) 

𝐶t = 𝑓t ⊙𝐶t−1 + it ⊙ tanh⁡(𝑊xc𝑋t +𝑊hcℎt−1 + 𝑏c)     (3) 

𝑂t = 𝜎(𝑊x∘𝑋t +𝑊h∘ℎt−1 +𝑊CO𝐶t + 𝑏O)       (4) 

ℎt = 𝑂t ⊙ℎ(ct)          (5) 
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where 𝑖, 𝑜, 𝑓, 𝑐,𝑊 represent the input gate, exit gate, forget gate, cell activation vector and weight ma-
trix, respectively. The definition of a sigmoid function 𝜎(𝑥) is shown in Equation 6. 

𝜎(𝑥) =
1

1+𝑒−𝑥
          

 (6)  

3. Results 

In this study, the daily dam occupancy rate data between 2005 and 2021 for İstanbul is used to train the 
LSTM network. Figure 2 shows the daily dam occupancy rate for İstanbul for the last 15 years [31]. 

 
 
 
 
 
 
 
 
 

 
Figure 2. The daily dam occupancy rate data 

 
The LSTM is implemented in Python by using the Keras library with the TensorFlow backend. The num-

ber of epochs is determined as 100 in the LSTM structure. 80% of the time series data is used to train the 
network and 20% of the data is used to test the network. Additionally, to achieve better performance the 
lag is analysed between 7 and 14. Besides, different numbers for LSTM units are tested. The results of the 
LSTM models are presented in Table 1. 

 
 

TABLE 1. The LSTM results 

LAG LSTM units RMSE MAPE LAG LSTM units RMSE MAPE 

7 32 0.906 1.266 11 32 0.490 0.499 
7 64 0.704 0.877 11 64 1.064 1.361 
7 128 0.434 0.386 11 128 0.653 1.022 
7 256 2.635 3.664 11 256 0.510 0.696 
7 512 0.586 0.658 11 512 1.655 2.598 
8 32 0.387 0.325 12 32 0.620 1.036 
8 64 0.384 0.325 12 64 0.402 0.317 
8 128 0.439 0.561 12 128 0.450 0.476 
8 256 0.466 0.650 12 256 0.381 0.289 
8 512 0.509 0.573 12 512 1.279 2.077 
9 32 0.411 0.339 13 32 0.569 0.895 
9 64 0.472 0.528 13 64 0.414 0.448 
9 128 0.411 0.348 13 128 0.385 0.303 
9 256 0.455 0.529 13 256 0.659 0.655 
9 512 0.466 0.601 13 512 2.284 3.698 
10 32 0.565 0.725 14 32 0.515 0.590 
10 64 0.436 0.363 14 64 1.146 1.823 
10 128 0.400 0.296 14 128 0.703 1.046 
10 256 0.424 0.459 14 256 1.180 1.619 

0.
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100.
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10 512 0.443 0.412 14 512 0.387 0.296 

 
 
 

Different error measures are used in this study to evaluate the accuracy of the proposed methodology 
from a variety of perspectives [32]. One of the most popular error measurements, MSE, can be calculated 
as follows [33]: 

RMSE = ට 1

𝑚
σ ⬚𝑚
𝑗=1 ቀ𝑦𝑗 − 𝑦

^

𝑗ቁ
2

        (7) 

MAPE is another one of the most common measures used to determine estimation accuracy [34] (due 
to its features such as scale independence and interpretability [35], [36]. MAPE is calculated as [37]: 

MAPE =
1

𝑚
σ ⬚𝑚
𝑗=1 ቤ

𝑦𝑗−𝑦
^
𝑗

𝑦
^
𝑗

ቤ         

 (8) 

In this paper, we adopted RMSE and MAPE to determine the performance of our proposed model. The 
best performance is determined as 12 lags with 256 LSTM units for both RMSE and MAPE. After the best 
structure was determined, the network was trained using this structure. Figure 3 shows the training and 
test results obtained. 

 

 
 

Figure 3. The training and test results of LSTM   

 
Then, the network is then simulated and forecasts are made for the next 30 days. Figure 4 shows the 

forecasted values for 30 days. 
 
 
 

 
 
 
 
 
 
 

Figure 4. Forecasted values for the next 30 days 
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With the increase in the consumption of limited resources in the world and the effect of global 
warming, the occupancy levels in the dams are decreasing. Especially the changes in precipitation patterns 
and temperature averages affect the amount of water in the dams significantly. With this forecasting 
methodology, we proposed a model in which the water level in the dams can be predicted by making 
future predictions. In this study, as seen in the graph shown in Figure 3, it is forecasted that the water level 
will decrease for the following months. Thus, managers should take necessary precautions. 

3.1. Comparative analysis with ARIMA 

ARIMA is one of the most used techniques for parametric univariate time series modelling. ARIMA 
models are applied to non-stationary series but converted to stationary by difference-taking. ARIMA 
makes a strong assumption that future data values are linearly dependent on current and past data values, 
similar to other linear methods [38]. In this way, ARIMA gives high accuracy results in stationary time series 
forecasting. The ARIMA method uses autoregressive (AR) and moving average (MA) models. AR includes 
lagged terms and MA includes lagged terms on the residuals or noise [39]. ARIMA is uses the stationary 
time series data with no missing values. So, time series data can be modelled as stationary or can be trans-
formed to stationary by differencing. Whether the series is stationary is tested with the Dickey–Fuller sta-
tistics [40]. Thus, the ‘I’ (Integrated) letter in ARIMA means that the first-order difference is applied to 
transform time series into stationery. The general representation of the models is ARIMA (p, d, q). Here, p 
and q are the degrees AR model and MA model, respectively, and d is the degree of difference. The equa-
tion to represent the ARIMA model for the time sequence 𝑌𝑡 is given in Equation 9. 𝜀𝑡 is a normal random 
variable white noise sequence with zero mean and variance σ2 and B is the backshift operator whose effect 

on the 𝑌𝑡 can be represented as: 𝐵𝑑𝑌𝑡 = 𝑌𝑡−𝑑. 

𝜙𝑝(𝐵)(1 − 𝐵)𝑑𝑌𝑡 = 𝜃𝑞(𝐵)𝜀𝑡        

 (9) 

Different models are tested to achieve a better forecasting performance. The results of the ARIMA are 
presented in Table 2.  

TABLE 2. Results of ARIMA 

p q RMSE p q RMSE 

0 0 0.532 3 0 0.423 
0 1 0.449 3 1 0.414 
0 2 0.436 3 2 0.414 
0 3 0.432 3 3 0.414 
0 4 0.429 3 4 0.414 
0 5 0.428 3 5 0.414 
1 0 0.427 4 0 0.421 
1 1 0.427 4 1 0.414 
1 2 0.416 4 2 0.414 
1 3 0.414 4 3 0.414 
1 4 0.414 4 4 0.414 
1 5 0.414 4 5 0.414 
2 0 0.427 5 0 0.420 
2 1 0.416 5 1 0.414 
2 2 0.414 5 2 0.414 
2 3 0.414 5 3 0.414 
2 4 0.411 5 4 0.414 
2 5 0.414 5 5 0.413 
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The best results with respect to MSE are determined as the (2, 1, 4) model. The best model is deter-
mined with a 0.411 RMSE value. The best LSTM network is determined with 0.381 as mentioned before. 
So, LSTM shows better forecasting performance than ARIMA. 

4. Discussion 

This study aimed to estimate the dam occupancy rate by using the LSTM method. For this purpose, the 
occupancy rates of the dams in Istanbul are discussed. A time series LSTM model is developed and trained 
using data on daily occupancy rates between 2005 and 2021. Different LSTM models have been developed 
to obtain higher forecasting performance. With the help of the best model determined, the next 30 days 
are estimated with a 0.381 RMSE error. The obtained results were compared with ARIMA on the same 
dataset. As a result, it was seen that the LSTM method was more successful than ARIMA in estimating daily 
dam occupancy. 

In parallel with the increase in the world population, the water need is also increasing. Due to the fact 
that the main source of water is precipitation and these precipitations are not regular, and especially as a 
result of events such as climate change, the decrease in precipitation amounts can put countries in a very 
hard situation [41]. Therefore, it is very important to determine the dam occupancy rates and to make 
predictions for the future. 

5. Conclusion 

 In conclusion, sustainable water consumption should be ensured all over the world. In this period, 
where water resources are decreasing and the importance of precipitation is increasing, studies on rain-
water storage (rain harvesting) and active use will provide a more sustainable approach to eliminate the 
problems in water need. Effective and sustainable use of water resources should be ensured by determin-
ing the pressure on water resources with domestic and industrial water use analysis. Finally, even in cases 
where the dam occupancy rate is 100%, the awareness of the efficient and sparing use of water should 
continue. 

In the future study of the proposed LSTM model, the data set will be expanded and replicated with the 
obtained data. With the increase in the number of data, the model will be retested and the increase in the 
success rate will be monitored. In addition, the proposed model will be compared with different time se-
ries estimation methods. 
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